

ANNA UNIVERSITY, CHENNAI NON-AUTONOMOUS COLLEGES AFFILIATED TO ANNA UNIVERSITY REGULATIONS 2021 CHOICE BASED CREDIT SYSTEM

B.E. INDUSTRIAL ENGINEERING

PROGRAM EDUCATIONAL COURSE OBJECTIVES (PEOs)

I.	To provide the students a solid foundation in mathematical, scientific and engineering knowledge required to comprehend, analyze, design and develop innovative solutions for realtimeproblems.
II.	To impart the students a spirit of team work, effective communication and a
	commitment to professional ethics.
III.	To imbibe the students with a desire for lifelong learning and successful career with
	professional excellence.
IV.	To create and maintain an ambience for Industry – Institute Collaborations.

PROGRAM COURSE OUTCOMES (POs)

PO#	Graduate Attribute							
	Engineering knowledge: Apply the knowledge of mathematics, science, engineering							
	fundamentals, and an engineering specialization to the solution of complex engineering							
	problems.							
2	Problem analysis: Identify, formulate, review research literature, and analyze complex							
	engineering problems reaching substantiated conclusions using first principles of							
	mathematics, natural sciences, andengineeringsciences.							
3	Design/developmentof solutions: Design solutions for complex engineering problems and							
	design systemcomponentsor processes that meet the specified needs with appropriate							
	consideration for the public health and safety and the cultural, societal and environmental							
	considerations.							
4	Conduct investigations of complex problems: Use research-based knowledge and							
	research methods including design of experiments, analysis and interpretation of data and							
	synthesis of the information to provide valid conclusions.							
5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and							
	modern engineering and IT tools including prediction and modelling to complex engineering							
	activities with an understanding of the limitations.							

- The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issuesand the consequent responsibilities relevant to the professional engineering practice.
- 7 **Environmentand sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8 **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9 **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10 **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC COURSE OUTCOMES (PSOs)

On successful completion of the Industrial Engineering Degree programme, the Graduates shallexhibitthefollowing:

1.	Apply the knowledge gained inIndustrial Engineering for design and development of systems.
2.	Apply the knowledge acquired to investigate research oriented problems in Industrial engineering with due consideration for sustainability and social impacts.
3.	Use the engineering analysis and data management tools for effective management of multidisciplinary projects.

PEO's - PO's& PSO's MAPPING:

PEO		PO											PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
I.	3	3	3	2	1	2	2	1	2	1	1	2	3	3	2	
II.	2	2	2	2	2	2	2	3	3	3	1	2	3	3	2	
III.	3	3	2	2	2	3	2	2	2	2	2	3	3	2	2	
IV.	2	2	2	2	2	2	2	3	2	2	2	3	2	2	2	

PROGRAM ARTICULATION MATRIX

		iom Course name		PC)										PSO		
Year	Sem	Course name	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
		Induction Programme	3	-	2.5	_	-	_	-	1	-	-	3	_	_	-	-
		Professional English - I	3	3	1	1	2	3	1	1	2	3	1	1	2	3	1
		Matrices and Calculus	3	3	1	1	0	0	0	0	2	0	2	3	-	-	-
		Engineering Physics	3	3	1.6	1.2	1.8	1	-	-	-	-	-	1	-	-	-
		Engineering Chemistry	2.8	1.3	1.6	1	-	1.5	1.8	-		-	-	1.5	-	-	-
I	ı	Problem Solving and Python Programming	2	3	3	3	2	-	_	-	_	-	2	2	3	3	-
		Problem Solving and Python Programming Laboratory	2	3	3	3	2	-	-	-	_	-	2	2	3	3	-
		Physics and Chemistry Laboratory	3	2.4	2.6	1	1	4.4	4.0					4.0			
		Professional English - II	2.6	1.3	1.6	3	1 2.75	_	1.8 3	3	2.2	3	3	1.3 3	-	-	╄—
		Statistics and Numerical			3	3	2.75	3	ى ا	3	2.2	3	٥	3	-	-	
		Methods	3	3	1.6	1 1.4	1.8	0	0	0	2	0	2	3	_	-	
		Materials Science				1.4	1.0	1.2	'		-	-	-	-	-	-	
1	II	Basic Electrical and Electronics Engineering	2	1.8	1					1				2			1
		Engineering Graphics NCC Credit Course Level 1*	3	1	2	-	2	+	<u> </u>	-	-	3	<u> </u>	2	2	2	
		Engineering Practices Laboratory	3	2			1	1	1					2	2	1	1
		Basic Electrical and Electronics Engineering Laboratory	3	3	2	1	1			1.5	2						1
		Probability and Linear Algebra	3	-	2.5	-	-	-	-	1	-	-	3	-	-	-	-
		Fluid Mechanics and Machinery	2	1	2.5	1	1.33	1.5	1.5	1.5	1.66	2	3	2	1.5	1.66	1
II	ı	Strength of Materials	1.5	1.66	3	1.66	2	3	2	2	1	2.5	1	1.33	1.5	1.5	2.5
		Work System Design	1.5	2	3	2.5									2	1.33	
		Manufacturing Processes	1.66	1	1	1.5	1.5	1		1	2	3	1	1	1.5	1	1.25
		Strength of Materials and Fluid Machinery Laboratory	3	2	2.6	1								2	3	1	1.6
		Manufacturing TechnologyLaboratory	2.7	3	2	3		3		2		2		2	3	2	
		Operations Research	2.4	2.4	3	2.4	2.6		0.4					0.0	2.5	1.6	2.5
		Thermodynamics Applied Ergonomics	3 1	2	3	2.6	3		2.4					2.6	3	1.3	2.4
		Engineering Quality Control	2	2.2	2	2.2	1.8	1.6	2	1.8	1.4	1.8	2.4	1.8	2	1.3	2
		Mechanics of Machines	3	2.2	2	2.2	2	1.0		1.0	1.7	1.0	2.7	1.0	3	1.5	1
II I	II	Environmental Science and Sustainability	J							·							
		NCC Credit Course Level 2*															+
		Work System Design Laboratory		2	2											2	2
		Optimization Laboratory	3	2.6	3	2.7	2.3						1.5	3	2.5	3	2
		Production and Operations						1	_		_						
		Management	3	3	2.7	2	2	1	2	2	2		2	2	2		2
		Machine Design	2	2	3					1				2	3		2
		Professional Elective I															
III		Professional Elective II						1									1
	ı	Professional Elective III						1					<u> </u>			1	
	-	Professional Elective IV	4	4.0		0.0	4.0	╄					_			-	
		Ergonomics Laboratory	1	1.6	2	2.2	1.8	1					1		2	1	2
		Computer Aided Machine Drawing	3				2.75					3		3	2.25	2.5	2.25
								1		<u> </u>			<u> </u>				<u> </u>
		Manufacturing Automation	2	3	3		2	1		1			2		2.5	2	2
		Open Elective – I*						<u> </u>		ļ			<u> </u>			<u> </u>	├
,		Professional Elective V		-	-		-	+	-				1		-	<u> </u>	₩
III		Professional Elective VI						 					1			 	+
	П	Professional Elective VII Professional Elective VIII						1					1			1	+
		Mandatory Course-II**						+		-			1			-	+
		NCC Credit Course Level 3***						\vdash					1				
		0.00.00 -000.0		ı	i	1	1	1			1		1	1	1	1	

		Automation Laboratory	2		3		3					2	2.2	1.5	1.5
		Simulation Modeling and Analysis	2.5	2.1	2.3	2.7	2.5				3	3	1		1
		Supply Chain Management		2.8	3	2	2.5	2		2		2	2	3	3
		Ethics and Human values													
IV		Elective – Management													
		Open Elective – II													
	ı	Open Elective – III													
		Open Elective – IV**													
		Systems Simulation Laboratory		3	3	3	2.6						2	2.5	

ANNA UNIVERSITY, CHENNAI NON-AUTONOMOUS COLLEGES AFFILIATED TO ANNA UNIVERSITY B. E. INDUSTRIAL ENGINEERING

REGULATIONS 2021

CHOICE BASED CREDIT SYSTEM CURRICULUM AND SYLLABI FOR SEMESTERS I TO VIII SEMESTER I

	OLINES LICE											
SL. NO.	COURSE	COURSE TITLE	CATE - GORY	PEF	RIODS WEE		TOTAL CONTACT	CREDITS				
				L	Т	Р	PERIODS					
1.	IP3151	Induction Programme	-	-	-	-	-	0				
THEO	RY											
2.	HS3152	Professional English - I	HSMC	3	0	0	3	3				
3.	MA3151	Matrices and Calculus	BSC	3	1	0	4	4				
4.	PH3151	Engineering Physics	BSC	3	0	0	3	3				
5.	CY3151	Engineering Chemistry	BSC	3	0	0	3	3				
6.	GE3151	Problem Solving and Python Programming	ESC	3	0	0	3	3				
7.	GE3152	தமிழர் மரபு/ Heritage of Tamils	HSMC	1	0	0	1	1				
PRAC	TICAL				•							
7	GE3171	Problem Solving and Python Programming Laboratory	ESC	0	0	4	4	2				
8	BS3171	Physics and Chemistry Laboratory	BSC	0	0	4	4	2				
9	GE3172	English Laboratory \$		0	0	2	2	1				
			TOTAL	16	1	10	27	22				

^{\$} Skill Based Course

SEMESTER II

		CLINEOTE	Ī					
SL. NO.	COURSE	COURSE TITLE	CATE - GORY		ERIO R WE		TOTAL CONTACT	CREDITS
				L	Т	Р	PERIODS	
THEO	RY							
1.	HS3252	Professional English - II	HSMC	2	0	0	2	2
2.	MA3251	Statistics and Numerical Methods	BSC	3	1	0	4	4
3.	PH3251	Materials Science	BSC	3	0	0	3	3
4.	BE3251	Basic Electrical and Electronics Engineering	ESC	3	0	0	3	3
5.	GE3251	Engineering Graphics	ESC	2	0	4	6	4
6.		NCC Credit Course Level 1#	-	2	0	0	2	2
7.	GE3252	தமிழரும் தொழில்நுட்பமும் /	HSMC	1	0	0	1	1
7.		Tamils and Technology						
PRAC	TICAL							
8.	GE3271	Engineering Practices Laboratory	ESC	0	0	4	4	2
9.	BE3271	Basic Electrical and Electronics Engineering Laboratory	ESC	0	0	4	4	2
10.	GE3272	Communication Laboratory / Foreign Language \$	EEC	0	0	4	4	2
			TOTAL	14	1	16	31	23

^{*} NCC Credit Course level 1 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

^{\$} Skill Based Course

SEMESTER III

S.	Course	Course Title	Cate-	Peri wee	ods k	per	Total contact	Credits
No.	Code		Gory	L	Т	Р	periods	
THEC	DRY							
1.	MA3352	Probability and Linear Algebra	BSC	3	1	0	4	4
2.	CE3391	Fluid Mechanics and Machinery	ESC	3	1	0	4	4
3.	CE3491	Strength of Materials	ESC	3	0	0	3	3
4.	IE3351	Work System Design	PCC	3	0	0	3	3
5.	ME3393	Manufacturing Processes	PCC	3	0	0	3	3
6.	ME3351	Engineering Mechanics	ESC	3	0	0	3	3
PRAC	CTICAL							
7.	CE3481	Strength of Materials and Fluid Machinery Laboratory	PCC	0	0	4	4	2
8.	ME3382	Manufacturing Technology Laboratory	PCC	0	0	4	4	2
9.	GE3361	Professional Development ^{\$}	EEC	0	0	2	2	1
	•	•	TOTAL	18	2	10	30	25

[§] Skill Based Course

SEMESTER IV

S.	Course	Course Title	Cate-		erioc r we	_	Total contact	Credits
No.	Code		Gory	L	T	Р	periods	
THEC	RY							
1.	IE3491	Operations Research	PCC	3	0	0	3	3
2.	IE3451	Thermodynamics	PCC	3	1	0	4	4
3.	IE3452	Applied Ergonomics	PCC	4	0	0	4	4
4.	IE3453	Engineering Quality Control	PCC	3	0	0	3	3
5.	AE3491	Mechanics of Machines	PCC	3	0	0	3	3
6.	GE3451	Environmental Sciences and Sustainability	BSC	2	0	0	2	2
7.		NCC Credit Course Level 2#		3	0	0	3	0
PRAC	CTICAL							
8.	IE3411	Work System Design Laboratory	PCC	0	0	3	3	1.5
9.	IE3461	Optimization Laboratory	PCC	0	0	3	3	1.5
			TOTAL	18	1	6	25	22

^{*} NCC Credit Course level 2 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

SEMESTER V

S. No.	Course Code	Course title	Cate		iods week	•	Total contact	Credits
NO.	Code		Gory	L	Т	Р	periods	
THE	ORY							
1.	IE3551	Production and Operations Management	PCC	3	0	0	3	3
2.	CPR333	Machine Design	PCC	-	-	-	-	3
3.		Professional Elective I	PEC	-	-	-	-	3
4.		Professional Elective II	PEC	-	-	-	-	3
5.		Professional Elective III	PEC	-	-	-	-	3
6.		Professional Elective IV	PEC	-	-	-	-	3
7.		Mandatory Course-I ^{&}	МС	3	0	0	3	Non-Credit Course
PRA	CTICAL			•				
8.	IE3511	Ergonomics Laboratory	PCC	0	0	2	2	1
9.	ME3381	Computer Aided Machine Drawing	PCC	0	0	4	4	2
TOT	٩L			-		-		21

[&] Mandatory Course-I is a Non-credit Course (Student shall select one course from the list given under MCI)

SEMESTER VI

S. No.	Course	Course title	Cate	Per wee		per	Total contact	Credits
NO.	Code		Gory	L		Р	periods	
THE	ORY			•				
1.	IE3651	Manufacturing Automation	PCC	3	0	0	3	3
2.		Open Elective – I*	OEC	3	0	0	3	3
3.		Professional Elective V	PEC	-	-	-	-	3
4.		Professional Elective VI	PEC	-	-	-	-	3
5.		Professional Elective VII	PEC	-	-	-	-	3
6.		Professional Elective VIII	PEC	-	-	•	-	3
7.		Mandatory Course-II&	МС	3	0	0	3	Non-Credit Course
8.		NCC Credit Course Level 3#		3	0	0	3	3
PRA	CTICAL					1		•
9.	IE3611	Automation Laboratory	PCC	0	0	2	2	1
			TOTAL	-	-	-	-	19

^{*}Open Elective – I shall be chosen from the emerging technologies.

[&] Mandatory Course-I is a Non-credit Course (Student shall select one course from the list given under MCII)

^{*} NCC Credit Course level 3 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER VII/VIII*

S.	Course Code	Course title	Cate		Period er we	_	Total Contact	Credits
No.	Code		Gory	L	Т	Р	periods	
THE	DRY							
1.	IE3791	Simulation Modeling and Analysis	PCC	3	0	0	3	3
2.	IE3792	Supply Chain Management	PCC	3	0	0	3	3
3.	GE3791	Human Values and Ethics	HSMC	3	0	0	3	3
4.		Elective – Management #	HSMC	3	0	0	3	3
5.		Open Elective – II**	OEC	3	0	0	3	3
6.		Open Elective – III***	OEC	3	0	0	3	3
7.		Open Elective – IV***	OEC	3	0	0	3	3
PRAC	CTICAL							
8.	IE3781	Systems Simulation Laboratory	PCC	0	0	2	2	1
		·	TOTAL	21	0	2	23	22

^{*}If students undergo internship in Semester VII, then the courses offered during semester VIII will be offered during semester VIII.

SEMESTER VIII / VII*

S.	Course	Course title	Cate	Periods per week		-				Credits
No.	code		Gory	L	Т	Р	periods			
PRAC	PRACTICAL									
1.	IE3811	Project Work / Internship	EEC	0	0	20	20	10		
			TOTAL	0	0	20	20	10		

^{*}If students undergo internship in Semester VII, then the courses offered during semester VIII will be offered during semester VIII

TOTAL CREDITS: 164

^{**}Open Elective – II shall be chosen from the emerging technologies.

^{***}Open Elective III and IV (Shall be chosen from the list of open electives offered by other Programmes).

^{*} Elective - Management shall be chosen from the elective Management courses

MANDATORY COURSES I*

S. NO.	COURSE	COURSE TITLE	CATE GORY	PERIODS PER WEEK			TOTAL CONTACT
NO.	CODE		90	L	T	Р	PERIODS
1.	MX3081	Introduction to Women and	MC	3	0	0	3
		Gender Studies					
2.	MX3082	Elements of Literature	MC	3	0	0	3
3.	MX3083	Film Appreciation	MC	3	0	0	3
4.	MX3084	Disaster Risk Reduction and	MC	3	0	0	3
		Management					

^{*}Mandatory Courses are offered as Non-Credit courses

MANDATORY COURSES II*

S. NO.	COURSE CODE	COURSE TITLE	CATE GORY		ERIO R W	DS EEK	TOTAL CONTACT
140.	O		GOKT	L	T	Р	PERIODS
1.	MX3085	Well Being with Traditional Practices -Yoga, Ayurveda and Siddha	MC	3	0	0	3
2.	MX3086	History of Science and Technology in India	MC	3	0	0	3
3.	MX3087	Political and Economic Thought for a Humane Society	MC	3	0	0	3
4.	MX3088	State, Nation Building and Politics in India	MC	3	0	0	3
5.	MX3089	Industrial Safety	MC	3	0	0	3

^{*}Mandatory Courses are offered as Non-Credit courses

ELECTIVE - MANAGEMENT COURSES

SL. NO.	COURSE CODE	COURSE TITLE	(i()RY			TOTAL CONTACT	CREDITS	
NO.			GORT	L	Т	Р	PERIODS	
1.	GE3751	Principles of Management	HSMC	3	0	0	3	3
2.	GE3752	Total Quality Management	HSMC	3	0	0	3	3
3.	GE3753	Engineering Economics and Financial Accounting	HSMC	3	0	0	3	3
4.	GE3754	Human Resource Management	HSMC	3	0	0	3	3
5.	GE3755	Knowledge Management	HSMC	3	0	0	3	3
6.	GE3792	Industrial Management	HSMC	3	0	0	3	3

			PROFESSIONAL I	ELECTIVE COURSE	S:VERTICALS			
Vertical 1	Vertical 2	Vertical 3	Vertical 4	Vertical 5	Vertical 6	Vertical 7	Vertical 8	Vertical 9
Operations and Supply Chain Management	Manufacturing System		Software Quality Engineering	Robotics and Automation	Product and Process Development	Digital and Green Manufacturing	Diversified Courses Group 1	Diversified Courses Group 2
Project Management	Systems Engineering	Metrology and Measurements	Data Base Management Systems	Sensors and Instrumentation	Value Engineering	Digital Manufacturing and IoT	Materials Management	Entrepreneurship Development
Product Design and Value Engineering	Computer Integrated Manufacturing	Quality Assurance and Auditing	Design and Analysis of Algorithms	Electrical Drives and Actuators	Additive Manufacturing	Lean Manufacturing	Computational Methods and Algorithms	Decision Support and Intelligent Systems
Facility Design	Flexible Manufacturing Systems	Maintenance Engineering	Software Cost Estimation	Embedded Systems and Programming	CAD/CAM	Modern Robotics	Management Accounting and Financial Management	Automotive Systems
Business Process Re- engineering	Lean and Agile Manufacturing	Design of Experiments	Agile Software Development	Robotics	Design For X	Green Manufacturing Design and Practices	Robotics Engineering	Software Engineering and Methodologies
Enterprise Resource Planning	Operations Scheduling	Reliability Engineering	Software Quality Management	Smart mobility and Intelligent Vehicles	Ergonomics in Design	Environment Sustainability and Impact Assessment	Design Thinking and Innovation	Safety Engineering and Management
Cost Estimation and Control	Modelling of Manufacturing Systems	Advanced Measurement System	Software Testing	Haptics and Immersive Technologies	New Product Development	Energy Saving Machinery and Components	Productivity Management and Re- engineering	Principles of Computer Integrated Manufacturing Systems
Supply Chain Risk Management	Advanced Optimization Techniques	Lean Six Sigma	Software Metrics and Quality Audit	Drone Technologies	Product Life Cycle Management	Green Supply Chain Management	Applied Soft Computing	Cloud Computing
Logistics Management	-	Multivariate Data Analysis	Business Data Analytics	-	-	-	Nontraditional Manufacturing	Industry 4.0

Registration of Professional Elective Courses from Verticals:

Refer to the Regulations 2021, Clause 6.3. (Amended on 27.07.2023)

PROFESSIONAL ELECTIVE COURSES: VERTICALS

VERTICAL 1: OPERATIONS AND SUPPLY CHAIN MANAGEMENT

SI. No.	Course code	Course Title	Category	Periods Perweek			Total Contact	Credits
INO.				L	T	Р	Periods	
1.	CIE331	Project Management	PEC	3	0	0	3	3
2.	CIE332	Product Design and Value Engineering	PEC	თ	0	0	3	3
3.	CIE333	Facility Design	PEC	3	0	0	3	3
4.	CIE334	Business Process Re- engineering	PEC	3	0	0	3	3
5.	CIE335	Enterprise Resource Planning	PEC	3	0	0	3	3
6.	CIE336	Cost Estimation and Control	PEC	3	0	0	3	3
7.	CIE337	Supply Chain Risk Management	PEC	3	0	0	3	3
8.	CIE338	Logistics Management	PEC	3	0	0	3	3

VERTICAL 2: MANUFACTURING SYSTEMS

SI. No.	Course Code	Course Title	Category	Periods Perweek		_	Total Contact	Credits
				L	Т	Р	Periods	
1.	CIE339	Systems Engineering	PEC	3	0	0	3	3
2.	ME3792	Computer Integrated Manufacturing	PEC	3	0	0	3	3
3.	CIE340	Flexible Manufacturing Systems	PEC	3	0	0	3	3
4.	CIE341	Lean and Agile Manufacturing	PEC	3	0	0	3	3
5.	CIE342	Operations Scheduling	PEC	3	0	0	3	3
6.	CIE343	Modelling of Manufacturing Systems	PEC	3	0	0	3	3
7.	CIE344	Advanced Optimization Techniques	PEC	3	0	0	3	3

VERTICAL 3: QUALITY SYSTEMS

SI. No.	Course Code	Course Title	Category	Perweek			Total Contact	Credits
				L	T	Р	Periods	
1.	ME3592	Metrology and Measurements	PEC	3	0	0	3	3
2.	CIE345	Quality Assurance and Auditing	PEC	3	0	0	3	3
3.	CIE346	Maintenance Engineering	PEC	3	0	0	3	3
4.	CIE347	Design of Experiments	PEC	3	0	0	3	3
5.	CIE348	Reliability Engineering	PEC	3	0	0	3	3
6.	CIE349	Advanced Measurement System	PEC	3	0	0	3	3
7.	CIE350	Lean Six Sigma	PEC	3	0	0	3	3
8.	CIE351	Multivariate Data Analysis	PEC	3	0	0	3	3

VERTICAL 4: SOFTWARE QUALITY ENGINEERING

SL. NO.	COURSE CODE	COURSETITLE	CATEGORY	PERIODS PERWEEK			TOTAL CONTACT	CREDITS
				L	T	Р	PERIODS	
1.	CIE365	Database Management System	PEC	3	0	0	3	3
2.	CIE352	Design and Analysis of Algorithms	PEC	3	0	0	3	3
3.	CIE353	Software Cost Estimation	PEC	3	0	0	3	3
4.	CIE354	Agile Software Development	PEC	3	0	0	3	3
5.	CIE355	Software Quality Management	PEC	3	0	0	3	3
6.	CIE356	Software Testing	PEC	3	0	0	3	3
7.	CIE357	Software Metrics and Quality Audit	PEC	3	0	0	3	3
8.	CIE358	Business Data Analytics	PEC	3	0	0	3	3

VERTICAL 5: ROBOTICS AND AUTOMATION

SL.	COURSE		CATEGORY		ERIO		TOTAL	
NO.	CODE	COURSE TITLE		PE	R WE	EEK	CONTACT	CREDITS
				L	T	Р	PERIOD	
1.	MR3491	Sensors and Instrumentation	PEC	3	0	0	3	3
2.	MR3392	Electrical Drives and Actuators	PEC	3	0	0	3	3
3.	MR3492	Embedded Systems and Programming	PEC	2	0	2	4	3
4.	MR3691	Robotics	PEC	3	0	0	3	3
5.	CMR338	Smart mobility and Intelligent Vehicles	PEC	3	0	0	3	3
6.	CME345	Haptics and Immersive Technologies	PEC	3	0	0	3	3
7.	CRA332	Drone Technologies	PEC	3	0	0	3	3

VERTICAL 6: PRODUCT AND PROCESS DEVELOPMENT

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
				L	Т	Р	PERIOD	
1.	CME338	Value Engineering	PEC	3	0	0	3	3
2.	CME339	Additive Manufacturing	PEC	2	0	2	4	3
3.	CME340	CAD/CAM	PEC	3	0	0	3	3
4.	CME341	Design For X	PEC	3	0	0	3	3
5.	CME342	Ergonomics in Design	PEC	3	0	0	3	3
6.	CME343	New Product Development	PEC	3	0	0	3	3
7.	CME344	Product Life Cycle Management	PEC	3	0	0	3	3

VERTICAL 7: DIGITAL AND GREEN MANUFACTURING

SL.	COURSE		CATEGORY			ODS	TOTAL	CDEDITO
NO.	CODE	COURSE TITLE		L	T	EEK P	CONTACT PERIOD	CREDITS
1.	CME346	Digital Manufacturing and IoT	PEC	2	0	2	4	3
2.	CME347	Lean Manufacturing	PEC	3	0	0	3	3
3.	CME348	Modern Robotics	PEC	2	0	2	4	3
4.	CME349	Green Manufacturing Design and Practices	PEC	3	0	0	3	3
5.	CME350	Environment Sustainability and Impact Assessment	PEC	3	0	0	3	3
6.	CME351	Energy Saving Machinery and Components	PEC	3	0	0	3	3
7.	CME352	Green Supply Chain Management	PEC	3	0	0	3	3

VERTICAL 8: DIVERSIFIED COURSES GROUP 1

SL. NO.	COURSE	COURSE TITLE	CATEGORY	PERIODS PERWEEK			TOTAL CONTACT	CREDITS
110.	JOBE	OOOROL IIILL		L	T	P	PERIODS	OKEDITO
1.	IE3001	Materials Management	PEC	3	0	0	3	3
2.	IE3002	Computational Methods and Algorithms	PEC	3	0	0	လ	3
3.	CIE359	Management Accounting and Financial Management	PEC	3	0	0	3	3
4.	IE3003	Robotics Engineering	PEC	3	0	0	3	3
5.	CIE360	Design Thinking and Innovation	PEC	3	0	0	3	3
6.	CIE361	Productivity Management and Re- engineering	PEC	3	0	0	3	3
7.	IE3004	Applied Soft Computing	PEC	3	0	0	3	3
8.	IE3005	Non traditional Manufacturing	PEC	3	0	0	3	3

VERTICAL 9: DIVERSIFIED COURSES GROUP 2

SI. No.	Course Code	Course Title	Category	Perweek			Total Contact	Credits
				L	T	Р	periods	
1.	CIE362	Entrepreneurship Development	PEC	3	0	0	3	3
2.	CIE363	Decision Support and Intelligent Systems	PEC	3	0	0	3	3
3.	IE3006	Automotive Systems	PEC	3	0	0	3	3
4.	IE3007	Software Engineering and Methodologies	PEC	3	0	0	3	3
5.	CIE364	Safety Engineering and Management	PEC	3	0	0	3	3
6.	IE3008	Principles of Computer Integrated Manufacturing Systems	PEC	3	0	0	3	3
7.	IE3009	Cloud Computing	PEC	3	0	0	3	3
8.	CMF340	Industry 4.0	PEC	3	0	0	3	3

OPEN ELECTIVES

(Students shall choose the open elective courses, such that the course contents are not similar to any other course contents/title under other course categories).

OPEN ELECTIVE I AND II (EMERGING TECHNOLOGIES)

To be offered other than Faculty of Information and Communication Engineering

SL. NO.	COURSE CODE			PER PER	RIOE WE	_	TOTAL CONTACT	CREDITS
NO.			GORY	L	Т	Р	PERIODS	
1.	OCS351	Artificial Intelligence and Machine Learning Fundamentals	OEC	2	0	2	4	3
2.	OCS352	IoT Concepts and Applications	OEC	2	0	2	4	3
3.	OCS353	Data Science Fundamentals	OEC	2	0	2	4	3
4.	CCS333	Augmented Reality /Virtual Reality	OEC	2	0	2	4	3

OPEN ELECTIVES - III

SL. NO.	COURSE CODE	COURSE TITLE	CATE		ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
NO.				L	T	Р	PERIODS	
1.	OHS351	English for Competitive Examinations	OEC	3	0	0	3	3
2.	OMG352	NGOs and Sustainable Development	OEC	3	0	0	3	3
3.	OMG353	Democracy and Good Governance	OEC	3	0	0	3	3
4.	OCE353	Lean Concepts, Tools And Practices	OEC	3	0	0	3	3
5.	OME365	Renewable Energy Technologies	OEC	3	0	0	3	3
6.	OME354	Applied Design Thinking	OEC	3	0	0	3	3
7.	MF3003	Reverse Engineering	OEC	3	0	0	3	3
8.	OPR351	Sustainable Manufacturing	OEC	3	0	0	3	3
9.	AU3791	Electric and Hybrid Vehicle	OEC	3	0	0	3	3
10.	OAS352	Space Engineering	OEC	3	0	0	3	3
11.	OIM351	Industrial Management	OEC	3	0	0	3	3
12.	OSF351	Fire Safety Engineering	OEC	3	0	0	3	3
13.	OML351	Introduction to non- destructive testing	OEC	3	0	0	3	3
14.	ORA351	Foundation of Robotics	OEC	3	0	0	3	3
15.	OAE352	Fundamentals of Aeronautical Engineering	OEC	3	0	0	3	3
16.	OGI351	Remote Sensing Concepts	OEC	3	0	0	3	3
17.	OAI351	Urban Agriculture	OEC	3	0	0	3	3
18.	OEN351	Drinking Water Supply and Treatment	OEC	3	0	0	3	3

	ı	T					ı	ı
19.	OEE352	Electric Vehicle technology	OEC	3	0	0	3	3
20.	OEI353	Introduction to PLC	OEC	3	0	0	3	3
		Programming						
21.	OCH351	Nano Technology	OEC	3	0	0	3	3
22.	OCH352	Functional Materials	OEC	3	0	0	3	3
23.	OFD352	Traditional Indian Foods	OEC	3	0	0	3	3
24.	OFD353	Introduction to food processing	OEC	3	0	0	3	3
25.	OPY352	IPR for Pharma Industry	OEC	3	0	0	3	3
26.	OTT351	Basics of Textile Finishing	OEC	3	0	0	3	3
27.	OTT352	Industrial Engineering for Garment Industry	OEC	3	0	0	3	3
28.	OTT353	Basics of Textile Manufacture	OEC	3	0	0	3	3
29.	OPE351	Introduction to Petroleum Refining and Petrochemicals	OEC	3	0	0	3	3
30.	CPE334	Energy Conservation and Management	OEC	3	0	0	3	3
31.	OPT351	Basics of Plastics Processing	OEC	3	0	0	3	3
32.	OEC351	Signals and Systems	OEC	3	0	0	3	3
33.	OEC352	Fundamentals of Electronic Devices and Circuits	OEC	3	0	0	3	3
34.	CBM348	Foundation Skills in integrated product Development	OEC	3	0	0	3	3
35.	CBM333	Assistive Technology	OEC	3	0	0	3	3
36.	OMA352	Operations Research	OEC	3	0	0	3	3
37.	OMA353	Algebra and Number Theory	OEC	3	0	0	3	3
38.	OMA354	Linear Algebra	OEC	3	0	0	3	3
39.	OBT352	Basics of Microbial Technology	OEC	3	0	0	3	3
40.	OBT353	Basics of Biomolecules	OEC	3	0	0	3	3
41.	OBT354	Fundamentals of Cell and Molecular Biology	OEC	3	0	0	3	3

OPEN ELECTIVES – IV

SL.	COURSE	COURSE TITLE	CATE PERIODS PER WEEK				TOTAL CONTACT	CREDITS	
NO.			GORY	L	Т	Р	PERIODS		
1.	OHS352	Project Report Writing	OEC	3	0	0	3	3	
2.	OMA355	Advanced Numerical Methods	OEC	3	0	0	3	3	
3.	OMA356	Random Processes	OEC	3	0	0	3	3	
4.	OMA357	Queuing and Reliability Modelling	OEC	3	0	0	3	3	
5.	OMG354	Production and Operations Management for Entrepreneurs	OEC	3	0	0	3	3	

6.	OCE354	Basics of Integrated Water	OEC	3	0	0	3	3
	00_00.	Resources Management	0_0				C	
7.	OMG355	Multivariate Data Analysis	OEC	3	0	0	3	3
8.	OME352	Additive Manufacturing	OEC	3	0	0	3	3
9.	OME343	New Product Development	OEC	3	0	0	3	3
10.	OME355	Industrial Design & Rapid	OEC	3	0	0	3	3
		Prototyping Techniques						
11.	MF3010	Micro and Precision	OEC	3	0	0	3	3
		Engineering						_
12.	OMF354	Cost Management of	OEC	3	0	0	3	3
40	A110000	Engineering Projects	050	_			0	0
13.	AU3002	Batteries and Management	OEC	3	0	0	3	3
		system						
14.	AU3008	Sensors and Actuators	OEC	3	0	0	3	3
15.	OAS353	Space Vehicles	OEC	3	0	0	3	3
16.	OIM352	Management Science	OEC	3	0	0	3	3
17.	OIM353	Production Planning and	OEC	3	0	0	3	3
4.0		Control	0=0					
18.	OSF352	Industrial Hygiene	OEC	3	0	0	3	3
19.	OSF353	Chemical Process Safety	OEC	3	0	0	3	3
20.	OML352	Electrical, Electronic and	OEC	3	0	0	3	3
21.	OML353	Magnetic materials Nanomaterials and	OEC	3	0	0	3	3
۷۱.	OIVILSSS	applications	OEC	3	U	U	3	3
22.	OMR352	Hydraulics and Pneumatics	OEC	3	0	0	3	3
23.	OMR353	Sensors	OEC	3	0	0	3	3
24.	ORA352	Concepts in Mobile Robots	OEC	3	0	0	3	3
25.	MV3501	Marine Propulsion	OEC	3	0	0	3	3
26.	OMV351	Marine Merchant Vessels	OEC	3	0	0	3	3
27.	OMV352	Elements of Marine	OEC	3	0	0	3	3
		Engineering						
28.	OGI352	Geographical Information	OEC	3	0	0	3	3
		System						
29.	OAI352	Agriculture	OEC	3	0	0	3	3
		Entrepreneurship						
0.0	0511050	Development	050			_		
30.	OEN352	Biodiversity Conservation	OEC	3	0	0	3	3
31.	OEE353	Introduction to control	OEC	3	0	0	3	3
22	OEI354	systems Introduction to Industrial	OEC	3	0	0	3	3
32.	OE1334	Automation Systems	OEC	3	U	U	3	3
33.	OCH353	Energy Technology	OEC	3	0	0	3	3
34.	OCH354	Surface Science	OEC	3	0	0	3	3
35.	OFD354	Fundamentals of Food	OEC	3	0	0	3	3
33.	J. D00∓	Engineering				5	J	
36.	OFD355	Food safety and Quality	OEC	3	0	0	3	3
		Regulations				-	-	
37.	OPY353	Nutraceuticals	OEC	3	0	0	3	3
38.	OTT354	Basics of Dyeing and	OEC	3	0	0	3	3
		Printing						

39.	FT3201	Fibre Science	OEC	3	0	0	3	3
40.	OTT355	Garment Manufacturing	OEC	3	0	0	3	3
		Technology						
41.	OPE353	Industrial Safety	OEC	3	0	0	3	3
42.	OPE354	Unit Operations in Petro	OEC	3	0	0	3	3
		Chemical Industries						
43.	OPT352	Plastic Materials for	OEC	3	0	0	3	3
		Engineers						
44.	OPT353	Properties and Testing of	OEC	3	0	0	3	3
		Plastics						
45.	OEC353	VLSI Design	OEC	3	0	0	3	3
46.	CBM370	Wearable devices	OEC	3	0	0	3	3
47.	CBM356	Medical Informatics	OEC	3	0	0	3	3
48.	OBT355	Biotechnology for Waste	OEC	3	0	0	3	3
		Management						
49.	OBT356	Lifestyle Diseases	OEC	3	0	0	3	3
50.	OBT357	Biotechnology in Health	OEC	3	0	0	3	3
		Care						

SUMMARY

			B.E. II	NDUST	RIAL E	NGINE	ERING			
SI.No.	Subject Area		Credits per Semester							Credits Total
31.140.		ı	II	III	IV	V	VI	VII / VIII	VII / VIII	
1.	HSMC	3	2					6		11
2.	BSC	12	7	4	2					25
3.	ESC	5	11	10						26
4.	PCC			10	20	9	4	7		50
5.	PEC					12	12			24
6.	OEC						3	9		12
7.	EEC	1	2	1					10	14
8.	Mandatory Course (Non credit)					√	√			
		21	22	25	22	21	19	22	10	
Total										162

ENROLLMENT FOR B.E. / B. TECH. (HONOURS) / MINOR DEGREE (OPTIONAL)

A student can also optionally register for additional courses (18 credits) and become eligible for the award of B.E. / B. Tech. (Honours) or Minor degree.

For B.E. / B. Tech. (Honours), a student shall register for the additional courses (18 credits) from semester V onwards. These courses shall be from the same vertical or a combination of different verticals of the same programme of study only.

For minor degree, a student shall register for the additional courses (18 credits) from semester V onwards. All these courses have to be in a particular vertical from any one of the other programmes, Moreover, for minor degree the student can register for courses from any one of the following verticals also.

Complete details are available in clause 4.10 (Amendments) of Regulations 2021.

<u>VERTICALS FOR MINOR DEGREE (In addition to all the verticals of other programmes)</u>

	ı		I	
VERTICAL I	VERTICAL II	VERTICAL III	VERTICAL IV	VERTICAL V
Fintech and Block Chain	Entrepreneurship	Public Administration	Business Data Analytics	Environment and Sustainability
Financial Management	Foundations of Entrepreneurship	Principles of Public Administration	Statistics for Management	Sustainable infrastructure Development
Fundamentals of Investment	Team Building and Leadership Management for Business	Constitution of India	Datamining for Business Intelligence	Sustainable Agriculture and Environmental Management
Banking, Financial Services and Insurance	Creativity and Innovation in Entrepreneurship	Public Personnel Administration	Human Resource Analytics	Sustainable Bio Materials
Introduction to Blockchain and its Applications	Principles of Marketing Management for Business	Administrative Theories	Marketing and Social Media Web Analytics	Materials for Energy Sustainability
Fintech Personal Finance and Payments	Human Resource Management for Entrepreneurs	Indian Administrative System	Operation and Supply Chain Analytics	Green Technology
Introduction to Fintech	Financing New Business Ventures	Public Policy Administration	Financial Analytics	Environmental Quality Monitoring and Analysis
-	-	-	-	Integrated Energy Planning for Sustainable Development
-	-	-	-	Energy Efficiency for Sustainable Development

(Choice of courses for Minor degree is to be made from any one vertical of other programmes or from anyone of the following verticals)

VERTICAL 1: FINTECH AND BLOCK CHAIN

SL.	COURSE	COURSE TITLE	CATE		RIO R W	DS EEK	TOTAL CONTACT	CREDITS
NO.	CODE	OCCINCE THEE	GORY	L	Т	Р	PERIODS	OKEDITO
1.	CMG331	Financial Management	PEC	3	0	0	3	3
2.	CMG332	Fundamentals of Investment	PEC	3	0	0	3	3
3.	CMG333	Banking, Financial Services and Insurance	PEC	3	0	0	3	3
4.	CMG334	Introduction to Blockchain and its Applications	PEC	3	0	0	3	3
5.	CMG335	Fintech Personal Finance and Payments	PEC	3	0	0	3	3
6.	CMG336	Introduction to Fintech	PEC	3	0	0	3	3

VERTICAL 2: ENTREPRENEURSHIP

SL. NO.	COURSE	COURSE TITLE	CATE GORY		RIC R W	DS EEK	TOTAL CONTACT	CREDITS
NO.	CODL		GOKT	L	T	Р	PERIODS	
1.	CMG337	Foundations of Entrepreneurship	PEC	3	0	0	3	3
2.	CMG338	Team Building and Leadership Management for Business	PEC	3	0	0	3	3
3.	CMG339	Creativity and Innovation in Entrepreneurship	PEC	3	0	0	3	3
4.	CMG340	Principles of Marketing Management for Business	PEC	3	0	0	3	3
5.	CMG341	Human Resource Management for Entrepreneurs	PEC	3	0	0	3	3
6.	CMG342	Financing New Business Ventures	PEC	3	0	0	3	3

VERTICAL 3: PUBLIC ADMINISTRATION

SL.	COURSE CODE	COURSE TITLE	CATE		ERIC R W	DDS EEK	TOTAL CONTACT	CREDITS
NO.			GORY		Т	Р	PERIODS	
1.	CMG343	Principles of Public Administration	PEC	3	0	0	3	3
2.	CMG344	Constitution of India	PEC	3	0	0	3	3
3.	CMG345	Public Personnel Administration	PEC	3	0	0	3	3
4.	CMG346	Administrative Theories	PEC	3	0	0	3	3
5.	CMG347	Indian Administrative System	PEC	3	0	0	3	3
6.	CMG348	Public Policy Administration	PEC	3	0	0	3	3

VERTICAL 4: BUSINESS DATA ANALYTICS

SL. NO.	COURSE CODE	COURSE TITLE	CATE		RIO R WI	DS EEK	TOTAL CONTACT	CREDITS
110.			COICI	L	Т	Р	PERIODS	
1.	CMG349	Statistics for Management	PEC	3	0	0	3	3
2.	CMG350	Datamining for Business Intelligence	PEC	3	0	0	3	3
3.	CMG351	Human Resource Analytics	PEC	3	0	0	3	3
4.	CMG352	Marketing and Social Media Web Analytics	PEC	3	0	0	3	3
5.	CMG353	Operation and Supply Chain Analytics	PEC	3	0	0	3	3
6.	CMG354	Financial Analytics	PEC	3	0	0	3	3

VERTICAL 5: ENVIRONMENT AND SUSTAINABILITY

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY			DDS EEK	TOTAL CONTACT	CREDIT
110.			3	L	T	Р	PERIODS	
1.	CES331	Sustainable infrastructure Development	PEC	3	0	0	3	3
2.	CES332	Sustainable Agriculture and Environmental Management	PEC	3	0	0	3	3
3.	CES333	Sustainable Bio Materials	PEC	3	0	0	3	3
4.	CES334	Materials for Energy Sustainability	PEC	3	0	0	3	3
5.	CES335	Green Technology	PEC	3	0	0	3	3
6.	CES336	Environmental Quality Monitoring and Analysis	PEC	3	0	0	3	3
7.	CES337	Integrated Energy Planning for Sustainable Development	PEC	3	0	0	3	3
8.	CES338	Energy Efficiency for Sustainable Development	PEC	3	0	0	3	3

IP3151

INDUCTION PROGRAMME

This is a mandatory 2 week programme to be conducted as soon as the students enter the institution. Normal classes start only after the induction program is over.

The induction programme has been introduced by AICTE with the following objective:

"Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work for national needs and beyond. The graduating student must have knowledge and skills in the area of his/her study. However, he/she must also have broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he/she would understand and fulfill his/her responsibility as an engineer, a citizen and a human being. Besides the above, several metaskills and underlying values are needed."

"One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character."

Hence, the purpose of this programme is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature.

The following are the activities under the induction program in which the student would be fully engaged throughout the day for the entire duration of the program.

(i) Physical Activity

This would involve a daily routine of physical activity with games and sports, yoga, gardening, etc.

(ii) Creative Arts

Every student would choose one skill related to the arts whether visual arts or performing arts. Examples are painting, sculpture, pottery, music, dance etc. The student would pursue it everyday for the duration of the program. These would allow for creative expression. It would develop a sense of aesthetics and also enhance creativity which would, hopefully, grow into engineering design later.

(iii) Universal Human Values

This is the anchoring activity of the Induction Programme. It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, take decisions with courage, be aware of relationships with colleagues and supporting stay in the hostel and department, be sensitive to others, etc. A module in Universal Human Values provides the base. Methodology of teaching this content is extremely important. It must not be through do's and dont's, but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real life activities rather than lecturing. Discussions would be conducted in small groups of about 20 students with a faculty

mentor each. It would be effective that the faculty mentor assigned is also the faculty advisor for the student for the full duration of the UG programme.

(iv) Literary Activity

Literary activity would encompass reading, writing and possibly, debating, enacting a play etc.

(v) Proficiency Modules

This would address some lacunas that students might have, for example, English, computer familiarity etc.

(vi) Lectures by Eminent People

Motivational lectures by eminent people from all walks of life should be arranged to give the students exposure to people who are socially active or in public life.

(vii) Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the under privileged.

(viii) Familiarization to Dept./Branch & Innovations

They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities.

(ix) Department Specific Activities

About a week can be spent in introducing activities (games, quizzes, social interactions, small experiments, design thinking etc.) that are relevant to the particular branch of Engineering/Technology/Architecture that can serve as a motivation and kindle interest in building things (become a maker) in that particular field. This can be conducted in the form of a workshop. For example, CSE and IT students may be introduced to activities that kindle computational thinking, and get them to build simple games. ECE students may be introduced to building simple circuits as an extension of their knowledge in Science, and so on. Students may be asked to build stuff using their knowledge of science.

Induction Programme is totally an activity based programme and therefore there shall be no tests / assessments during this programme.

References:

Guide to Induction program from AICTE

OBJECTIVES:

- To improve the communicative competence of learners
- To learn to use basic grammatic structures in suitable contexts
- To acquire lexical competence and use them appropriately in a sentence and understand their meaning in a text
- To help learners use language effectively in professional contexts
- To develop learners' ability to read and write complex texts, summaries, articles, blogs, definitions, essays and user manuals.

UNIT I INTRODUCTION TO EFFECTIVE COMMUNICATION

What is effective communication? (Explain using activities) Why is communication critical for excellence during study, research and work? What are the seven C's of effective communication? What are key language skills? What is effective listening? What does it involve? What is effective speaking? What does it mean to be an excellent reader? What should you be able to do? What is effective writing? How does one develop language and communication skills? What does the course focus on? How are communication and language skills going to be enhanced during this course? What do you as a learner need to do to enhance your English language and communication skills to get the best out of this course?

INTRODUCTION TO FUNDAMENTALS OF COMMUNICATION

8

Reading - Reading brochures (technical context), telephone messages / social media messages relevant to technical contexts and emails. Writing - Writing emails / letters introducing oneself. Grammar - Present Tense (simple and progressive); Question types: Why/ Yes or No/ and Tags. Vocabulary - Synonyms; One word substitution; Abbreviations & Acronyms (as used in technical contexts).

UNIT II NARRATION AND SUMMATION

9

Reading - Reading biographies, travelogues, newspaper reports, Excerpts from literature, and travel & technical blogs. Writing - Guided writing-- Paragraph writing Short Report on an event (field trip etc.) Grammar —Past tense (simple); Subject-Verb Agreement; and Prepositions. Vocabulary - Word forms (prefixes suffixes); Synonyms and Antonyms. Phrasal verbs.

UNIT III DESCRIPTION OF A PROCESS / PRODUCT

9

Reading – Reading advertisements, gadget reviews; user manuals. Writing - Writing definitions; instructions; and Product / Process description. Grammar - Imperatives; Adjectives; Degrees of comparison; Present & Past Perfect Tenses. Vocabulary - Compound Nouns, Homonyms; and Homophones, discourse markers (connectives & sequence words).

UNIT IV CLASSIFICATION AND RECOMMENDATIONS

9

Reading – Newspaper articles; Journal reports –and Non Verbal Communication (tables, pie charts etc.). Writing – Note-making / Note-taking (*Study skills to be taught, not tested); Writing recommendations; Transferring information from non verbal (chart, graph etc, to verbal mode) Grammar – Articles; Pronouns - Possessive & Relative pronouns. Vocabulary - Collocations; Fixed / Semi fixed expressions.

UNIT V EXPRESSION

9

Reading – Reading editorials; and Opinion Blogs; Writing – Essay Writing (Descriptive or narrative). Grammar – Future Tenses, Punctuation; Negation (Statements & Questions); and Simple, Compound & Complex Sentences. Vocabulary - Cause & Effect Expressions – Content vs Function words.

TOTAL: 45 PERIODS

LEARNING OUTCOMES:

At the end of the course, learners will be able

- To use appropriate words in a professional context
- To gain understanding of basic grammatical structures and use them in right context.
- To read and interpret information presented in tables, charts and other graphic forms
- To write definitions, descriptions, narrations and essays on various topics

TEXT BOOKS:

- 1. English for Engineers & Technologists Orient Blackswan Private Ltd. Department of English, Anna University, (2020 edition)
- English for Science & Technology Cambridge University Press, 2021.
 Authored by Dr. Veena Selvam, Dr. Sujatha Priyadarshini, Dr. Deepa Mary Francis,
 Dr. KN. Shoba, and Dr. Lourdes Joevani, Department of English, Anna University.

REFERENCE BOOKS:

- Technical Communication Principles And Practices By Meenakshi Raman & Sangeeta Sharma, Oxford Univ. Press, 2016, New Delhi.
- 2. A Course Book On Technical English By Lakshminarayanan, Scitech Publications (India) Pvt. Ltd.
- 3. English For Technical Communication (With CD) By Aysha Viswamohan, Mcgraw Hill Education, ISBN: 0070264244.
- 4. Effective Communication Skill, Kulbhusan Kumar, RS Salaria, Khanna Publishing House.
- 5. Learning to Communicate Dr. V. Chellammal, Allied Publishing House, New Delhi.2003.

ASSESSMENT PATTERN

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence.

CO PO PSO _ -_ -_ --1.6 2.2 1.8 1.5 AVg.

CO-PO & PSO MAPPING

- 1-low, 2-medium, 3-high, '-"- no correlation
- Note: The average value of this course to be used for program articulation matrix.

L T P C 3 1 0 4

COURSE OBJECTIVES:

- To develop the use of matrix algebra techniques that is needed by engineers for practical applications.
- To familiarize the students with differential calculus.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To make the students understand various techniques of integration.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications.

UNIT - I MATRICES

9 + 3

Eigenvalues and Eigenvectors of a real matrix – Characteristic equation – Properties of Eigenvalues and Eigenvectors – Cayley - Hamilton theorem – Diagonalization of matrices by orthogonal transformation – Reduction of a quadratic form to canonical form by orthogonal transformation – Nature of quadratic forms – Applications: Stretching of an elastic membrane.

UNIT - II DIFFERENTIAL CALCULUS

9 + 3

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules (sum, product, quotient, chain rules) - Implicit differentiation - Logarithmic differentiation - Applications : Maxima and Minima of functions of one variable.

UNIT - III FUNCTIONS OF SEVERAL VARIABLES

9 + 3

Partial differentiation – Homogeneous functions and Euler's theorem – Total derivative – Change of variables – Jacobians – Partial differentiation of implicit functions – Taylor's series for functions of two variables – Applications : Maxima and minima of functions of two variables and Lagrange's method of undetermined multipliers.

UNIT - IV INTEGRAL CALCULUS

9 + 3

Definite and Indefinite integrals - Substitution rule - Techniques of Integration: Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals - Applications : Hydrostatic force and pressure, moments and centres of mass.

UNIT - V MULTIPLE INTEGRALS

9 + 3

TOTAL: 60 PERIODS

Double integrals – Change of order of integration – Double integrals in polar coordinates – Area enclosed by plane curves – Triple integrals – Volume of solids – Change of variables in double and triple integrals – Applications : Moments and centres of mass, moment of inertia.

COURSE OUTCOMES:

At the end of the course the students will be able to

- Use the matrix algebra methods for solving practical problems.
- Apply differential calculus tools in solving various application problems.
- Able to use differential calculus ideas on several variable functions.
- Apply different methods of integration in solving practical problems.
- Apply multiple integral ideas in solving areas, volumes and other practical problems.

TEXT BOOKS:

- 1. Kreyszig.E, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, New Delhi, 2016.
- 2. Grewal.B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44th Edition, 2018.
- 3. James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 8th Edition, New Delhi, 2015. [For Units II & IV Sections 1.1, 2.2, 2.3, 2.5, 2.7 (Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1 (Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.1 7.4 and 7.8].

REFERENCES:

- 1. Anton. H, Bivens. I and Davis. S, " Calculus ", Wiley, 10th Edition, 2016
- Bali. N., Goyal. M. and Watkins. C., "Advanced Engineering Mathematics", Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.
- 3. Jain. R.K. and Iyengar. S.R.K., "Advanced Engineering Mathematics", Narosa Publications, New Delhi, 5th Edition, 2016.
- 4. Narayanan. S. and Manicavachagom Pillai. T. K., "Calculus" Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2009.
- 5. Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2016.
- 6. Srimantha Pal and Bhunia. S.C, "Engineering Mathematics" Oxford University Press, 2015
- 7. Thomas. G. B., Hass. J, and Weir. M.D, "Thomas Calculus ", 14th Edition, Pearson India, 2018.

	PO 01	PO 02	PO 03	PO 04	PO 05	PO 06	PO 07	PO 08	PO 09	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	3	1	1	0	0	0	0	2	0	2	3	-	-	-
CO2	3	3	1	1	0	0	0	0	2	0	2	3	-	-	-
CO3	3	3	1	1	0	0	0	0	2	0	2	3	-	-	-
CO4	3	3	1	1	0	0	0	0	2	0	2	3	-	-	-
CO5	3	3	1	1	0	0	0	0	2	0	2	3	_	-	-
Avg	3	3	1	1	0	0	0	0	2	0	2	3	-	-	-

PH3151

ENGINEERING PHYSICS

L T P C 3 0 0 3

COURSE OBJECTIVES

- To make the students effectively to achieve an understanding of mechanics.
- To enable the students to gain knowledge of electromagnetic waves and its applications.
- To introduce the basics of oscillations, optics and lasers.
- Equipping the students to be successfully understand the importance of quantum physics.
- To motivate the students towards the applications of quantum mechanics.

UNIT I MECHANICS

9

Multi-particle dynamics: Center of mass (CM) – CM of continuous bodies – motion of the CM – kinetic energy of system of particles. Rotation of rigid bodies: Rotational kinematics –

rotational kinetic energy and moment of inertia - theorems of M .I -moment of inertia of continuous bodies - M.I of a diatomic molecule - torque - rotational dynamics of rigid bodies - conservation of angular momentum - rotational energy state of a rigid diatomic molecule - gyroscope - torsional pendulum - double pendulum - Introduction to nonlinear oscillations.

UNIT II ELECTROMAGNETIC WAVES

9

The Maxwell's equations - wave equation; Plane electromagnetic waves in vacuum, Conditions on the wave field - properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter - polarization - Producing electromagnetic waves - Energy and momentum in EM waves: Intensity, waves from localized sources, momentum and radiation pressure - Cell-phone reception. Reflection and transmission of electromagnetic waves from a non-conducting medium-vacuum interface for normal incidence.

UNIT III OSCILLATIONS, OPTICS AND LASERS

9

Simple harmonic motion - resonance –analogy between electrical and mechanical oscillating systems - waves on a string - standing waves - traveling waves - Energy transfer of a wave - sound waves - Doppler effect. Reflection and refraction of light waves - total internal reflection - interference –Michelson interferometer –Theory of air wedge and experiment. Theory of laser - characteristics - Spontaneous and stimulated emission - Einstein's coefficients - population inversion - Nd-YAG laser, CO_2 laser, semiconductor laser –Basic applications of lasers in industry.

UNIT IV BASIC QUANTUM MECHANICS

9

Photons and light waves - Electrons and matter waves - Compton effect - The Schrodinger equation (Time dependent and time independent forms) - meaning of wave function - Normalization - Free particle - particle in a infinite potential well: 1D,2D and 3D Boxes-Normalization, probabilities and the correspondence principle.

UNIT V APPLIED QUANTUM MECHANICS

9

TOTAL: 45 PERIODS

The harmonic oscillator(qualitative)- Barrier penetration and quantum tunneling(qualitative)- Tunneling microscope - Resonant diode - Finite potential wells (qualitative)- Bloch's theorem for particles in a periodic potential —Basics of Kronig-Penney model and origin of energy bands.

COURSE OUTCOMES

After completion of this course, the students should be able to

- Understand the importance of mechanics.
- Express their knowledge in electromagnetic waves.
- Demonstrate a strong foundational knowledge in oscillations, optics and lasers.
- Understand the importance of quantum physics.
- Comprehend and apply quantum mechanical principles towards the formation of energy bands.

TEXT BOOKS:

- 1. D.Kleppner and R.Kolenkow. An Introduction to Mechanics. McGraw Hill Education (Indian Edition), 2017.
- 2. E.M.Purcell and D.J.Morin, Electricity and Magnetism, Cambridge Univ. Press, 2013.
- 3. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, McGraw-Hill (Indian Edition), 2017.

REFERENCES:

- 1. R.Wolfson. Essential University Physics. Volume 1 & 2. Pearson Education (Indian Edition), 2009.
- 2. Paul A. Tipler, Physic Volume 1 & 2, CBS, (Indian Edition), 2004.
- 3. K.Thyagarajan and A.Ghatak. Lasers: Fundamentals and Applications, Laxmi Publications, (Indian Edition), 2019.
- 4. D.Halliday, R.Resnick and J.Walker. Principles of Physics, Wiley (Indian Edition), 2015.
- 5. N.Garcia, A.Damask and S.Schwarz. Physics for Computer Science Students. Springer-Verlag, 2012.

CO's-PO's & PSO's MAPPING

CO's	PO's	PO's													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	2	1	1	1	-	-	-	-	-	-	-	-	-
2	3	3	2	1	2	1	-	-	-	-	-	-	-	-	-
3	3	3	2	2	2	1	-	-	-	-	-	1	-	-	-
4	3	3	1	1	2	1	-	-	-	-	-	-	-	-	
5	3	3	1	1	2	1	-	-	-	-	-	-	-	-	-
AVG	3	3	1.6	1.2	1.8	1	-	-	-	-	-	1	-	-	-

1-Low,2-Medium,3-High,"-"-no correlation

Note: the average value of this course to be used for program articulation matrix.

CY3151

ENGINEERING CHEMISTRY

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To inculcate sound understanding of water quality parameters and water treatment techniques.
- To impart knowledge on the basic principles and preparatory methods of nanomaterials.
- To introduce the basic concepts and applications of phase rule and composites.
- To facilitate the understanding of different types of fuels, their preparation, properties and combustion characteristics.
- To familiarize the students with the operating principles, working processes and applications of energy conversion and storage devices.

UNIT I WATER AND ITS TREATMENT

9

Water: Sources and impurities, Water quality parameters: Definition and significance of-color, odour, turbidity, pH, hardness, alkalinity, TDS, COD and BOD, flouride and arsenic. Municipal water treatment: primary treatment and disinfection (UV, Ozonation, break-point chlorination). Desalination of brackish water: Reverse Osmosis. Boiler troubles: Scale and sludge, Boiler corrosion, Caustic embrittlement, Priming &foaming. Treatment of boiler feed water: Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning) and External treatment – Ion exchange demineralization and zeolite process.

UNIT II NANOCHEMISTRY

9

Basics: Distinction between molecules, nanomaterials and bulk materials; Size-dependent properties (optical, electrical, mechanical and magnetic); Types of nanomaterials: Definition, properties and uses of — nanoparticle, nanocluster, nanorod, nanowire and nanotube.

Preparation of nanomaterials: sol-gel, solvothermal, laser ablation, chemical vapour deposition, electrochemical deposition and electro spinning. Applications of nanomaterials in medicine, agriculture, energy, electronics and catalysis.

UNIT III PHASE RULE AND COMPOSITES

9

Phase rule: Introduction, definition of terms with examples. One component system - water system; Reduced phase rule; Construction of a simple eutectic phase diagram - Thermal analysis; Two component system: lead-silver system - Pattinson process.

Composites: Introduction: Definition & Need for composites; Constitution: Matrix materials (Polymer matrix, metal matrix and ceramic matrix) and Reinforcement (fiber, particulates, flakes and whiskers). Properties and applications of: Metal matrix composites (MMC), Ceramic matrix composites and Polymer matrix composites. Hybrid composites - definition and examples.

UNIT IV FUELS AND COMBUSTION

9

Fuels: Introduction: Classification of fuels; Coal and coke: Analysis of coal (proximate and ultimate), Carbonization, Manufacture of metallurgical coke (Otto Hoffmann method). Petroleum and Diesel: Manufacture of synthetic petrol (Bergius process), Knocking - octane number, diesel oil - cetane number; Power alcohol and biodiesel.

Combustion of fuels: Introduction: Calorific value - higher and lower calorific values, Theoretical calculation of calorific value; Ignition temperature: spontaneous ignition temperature, Explosive range; Flue gas analysis - ORSAT Method. CO₂ emission and carbon foot print.

UNIT V ENERGY SOURCES AND STORAGE DEVICES

a

Stability of nucleus: mass defect (problems), binding energy; Nuclear energy: light water nuclear power plant, breeder reactor. Solar energy conversion: Principle, working and applications of solar cells; Recent developments in solar cell materials. Wind energy; Geothermal energy; Batteries: Types of batteries, Primary battery - dry cell, Secondary battery - lead acid battery and lithium-ion-battery; Electric vehicles – working principles; Fuel cells: H₂-O₂ fuel cell, microbial fuel cell; Supercapacitors: Storage principle, types and examples.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of the course, the students will be able:

- To infer the quality of water from quality parameter data and propose suitable treatment methodologies to treat water.
- To identify and apply basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.
- To apply the knowledge of phase rule and composites for material selection requirements.
- To recommend suitable fuels for engineering processes and applications.
- To recognize different forms of energy resources and apply them for suitable applications in energy sectors.

TEXT BOOKS:

- 1. P. C. Jain and Monica Jain, "Engineering Chemistry", 17th Edition, Dhanpat Rai Publishing Company (P) Ltd, New Delhi, 2018.
- 2. Sivasankar B., "Engineering Chemistry", Tata McGraw-Hill Publishing Company Ltd, New Delhi, 2008.
- 3. S.S. Dara, "A Text book of Engineering Chemistry", S. Chand Publishing, 12th Edition, 2018.

REFERNCES:

- 1. B. S. Murty, P. Shankar, Baldev Raj, B. B. Rath and James Murday, "Text book of nanoscience and nanotechnology", Universities Press-IIM Series in Metallurgy and Materials Science, 2018.
- 2. O.G. Palanna, "Engineering Chemistry" McGraw Hill Education (India) Private Limited, 2nd Edition, 2017.
- 3. Friedrich Emich, "Engineering Chemistry", Scientific International PVT, LTD, New Delhi, 2014
- 4. ShikhaAgarwal, "Engineering Chemistry-Fundamentals and Applications", Cambridge University Press, Delhi, Second Edition, 2019.
- 5. O.V. Roussak and H.D. Gesser, Applied Chemistry-A Text Book for Engineers and Technologists, Springer Science Business Media, New York, 2nd Edition, 2013.

CO-PO & PSO MAPPING

СО			Р	0									PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	2	1	-	1	1	-	-	-	-	1	-	-	-	
2	2	-	-	1	-	2	2	-	-	-	-	-	•	-	-	
3	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-	
4	3	1	1	-	-	1	2	-	-	-	-	-	-	-	-	
5	3	1	2	1	-	2	2	-	-	-	-	2	-	-	-	
Avg.	2.8	1.3	1.6	1	-	1.5	1.8	-		-	-	1.5	-	-	-	

• 1-low, 2-medium, 3-high, '-"- no correlation

GE3151 PROBLEM SOLVING AND PYTHON PROGRAMMING

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To understand the basics of algorithmic problem solving.
- To learn to solve problems using Python conditionals and loops.
- To define Python functions and use function calls to solve problems.
- To use Python data structures lists, tuples, dictionaries to represent complex data.
- To do input/output with files in Python.

UNIT I COMPUTATIONAL THINKING AND PROBLEM SOLVING

Q

Fundamentals of Computing – Identification of Computational Problems -Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion). Illustrative problems: find minimum in a list, insert a card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.

UNIT II DATA TYPES, EXPRESSIONS, STATEMENTS

9

Python interpreter and interactive mode, debugging; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.

UNIT III CONTROL FLOW, FUNCTIONS, STRINGS

Ć

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: returnvalues, parameters, local and global scope, function composition, recursion; Strings: string slices,

immutability, string functions and methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

UNIT IV LISTS, TUPLES, DICTIONARIES

9

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: simple sorting, histogram, Students marks statement, Retail bill preparation.

UNIT V FILES, MODULES, PACKAGES

9

Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file, Voter's age validation, Marks range validation (0-100).

TOTAL : 45 PERIODS

COURSE OUTCOMES:

Upon completion of the course, students will be able to

- CO1: Develop algorithmic solutions to simple computational problems.
- CO2: Develop and execute simple Python programs.
- CO3: Write simple Python programs using conditionals and looping for solving problems.
- CO4: Decompose a Python program into functions.
- CO5: Represent compound data using Python lists, tuples, dictionaries etc.
- CO6: Read and write data from/to files in Python programs.

TEXT BOOKS:

- 1. Allen B. Downey, "Think Python: How to Think like a Computer Scientist", 2nd Edition, O'Reilly Publishers. 2016.
- 2. Karl Beecher, "Computational Thinking: A Beginner's Guide to Problem Solving and programming", 1st Edition, BCS Learning & Development Limited, 2017.

REFERENCES:

- 1. Paul Deitel and Harvey Deitel, "Python for Programmers", Pearson Education, 1st Edition, 2021.
- 2. G Venkatesh and Madhavan Mukund, "Computational Thinking: A Primer for Programmers and Data Scientists", 1st Edition, Notion Press, 2021.
- 3. John V Guttag, "Introduction to Computation and Programming Using Python: With Applications to Computational Modeling and Understanding Data", Third Edition, MIT Press 2021
- 4. Eric Matthes, "Python Crash Course, A Hands on Project Based Introduction to Programming", 2nd Edition, No Starch Press, 2019.
- 5. https://www.python.org/
- 6. Martin C. Brown, "Python: The Complete Reference", 4th Edition, Mc-Graw Hill, 2018.

COs- PO's & PSO's MAPPING

CO's	PO's												PSO's			
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	3	3	3	2	-	-	-	-	-	2	2	3	3	-	
2	3	3	3	3	2	-	-	-	-	-	2	2	3	-	-	
3	3	3	3	3	2	-	-			-	2	-	3	-	-	
4	2	2	-	2	2	-	-	-	-	-	1	-	3	-	-	
5	1	2	-	-	1	-	-	-	-	-	1	-	2	-	-	
AVg.	2	2	-	-	2	-	-	-	-	-	1	-	2	-	-	
	2	3	3	3	2	-	-	-	-	-	2	2	3	3	-	

1 - low, 2 - medium, 3 - high, '-' - no correlation

அலகு I <u>மொழி மற்றும் இலக்கியம்:</u>

3

இந்திய மொழிக் குடும்பங்கள் – திராவிட மொழிகள் – தமிழ் ஒரு செம்மொழி – தமிழ் செவ்விலக்கியங்கள் - சங்க இலக்கியத்தின் சமயச் சார்பற்ற தன்மை – சங்க இலக்கியத்தில் பகிர்தல் அறம் – திருக்குறளில் மேலாண்மைக் கருத்துக்கள் – தமிழ்க் காப்பியங்கள், தமிழகத்தில் சமண பௌத்த சமயங்களின் தாக்கம் - பக்தி இலக்கியம், ஆழ்வார்கள் மற்றும் நாயன்மார்கள் – சிற்றிலக்கியங்கள் – தமிழில் நவீன இலக்கியத்தின் வளர்ச்சி – தமிழ் இலக்கிய வளர்ச்சியில் பாரதியார் மற்றும் பாரதிதாசன் ஆகியோரின் பங்களிப்பு.

அலகு II <u>மரபு – பாறை ஓவியங்கள் முதல் நவீன ஓவியங்கள் வரை –</u> சிற்பக் கலை:

நடுகல் முதல் நவீன சிற்பங்கள் வரை – ஐம்பொன் சிலைகள்– பழங்குடியினர் மற்றும் அவர்கள் தயாரிக்கும் கைவினைப் பொருட்கள், பொம்மைகள் – தேர் செய்யும் கலை – சுடுமண் சிற்பங்கள் – நாட்டுப்புறத் தெய்வங்கள் – குமரிமுனையில் திருவள்ளுவர் சிலை – இசைக் கருவிகள் – மிருதங்கம், பறை, வீணை, யாழ், நாதஸ்வரம் – தமிழர்களின் சமூக பொருளாதார வாழ்வில் கோவில்களின் பங்கு.

அலகு III நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: 3 தெருக்கூத்து, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, ஒயிலாட்டம், தோல்பாவைக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், தமிழர்களின் விளையாட்டுகள்.

அலகு IV <u>தமிழர்களின் திணைக் கோட்பாடுகள்</u>:

3

3

தமிழகத்தின் தாவரங்களும், விலங்குகளும் – தொல்காப்பியம் மற்றும் சங்க இலக்கியத்தில் அகம் மற்றும் புறக் கோட்பாடுகள் – தமிழர்கள் போற்றிய அறக்கோட்பாடு – சங்ககாலத்தில் தமிழகத்தில் எழுத்தறிவும், கல்வியும் – சங்ககால நகரங்களும் துறை முகங்களும் – சங்ககாலத்தில் ஏற்றுமதி மற்றும் இறக்குமதி – கடல்கடந்த நாடுகளில் சோழர்களின் வெற்றி.

அலகு V இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்குத் தமிழர்களின் பங்களிப்பு:

இந்திய விடுதலைப்போரில் தமிழர்களின் பங்கு – இந்தியாவின் பிறப்பகுதிகளில் தமிழ்ப் பண்பாட்டின் தாக்கம் – சுயமரியாதை இயக்கம் – இந்திய மருத்துவத்தில், சித்த மருத்துவத்தின் பங்கு – கல்வெட்டுகள், கையெழுத்துப்படிகள் - தமிழ்ப் புத்தகங்களின் அச்சு வரலாறு.

TOTAL: 15 PERIODS

TEXT-CUM-REFERENCE BOOKS

- 1. தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)

- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

GE3152 HERITAGE OF TAMILS

L T P C 1 0 0 1

UNIT I LANGUAGE AND LITERATURE

0 1

Language Families in India - Dravidian Languages - Tamil as a Classical Language - Classical Literature in Tamil - Secular Nature of Sangam Literature - Distributive Justice in Sangam Literature - Management Principles in Thirukural - Tamil Epics and Impact of Buddhism & Jainism in Tamil Land - Bakthi Literature Azhwars and Nayanmars - Forms of minor Poetry - Development of Modern literature in Tamil - Contribution of Bharathiyar and Bharathidhasan.

UNIT II HERITAGE - ROCK ART PAINTINGS TO MODERN ART – SCULPTURE 3 Hero stone to modern sculpture - Bronze icons - Tribes and their handicrafts - Art of temple car making - Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari, Making of musical instruments - Mridhangam, Parai, Veenai, Yazh and Nadhaswaram - Role of Temples in Social and Economic Life of Tamils.

UNIT III FOLK AND MARTIAL ARTS

3

Therukoothu, Karagattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Leather puppetry, Silambattam, Valari, Tiger dance - Sports and Games of Tamils.

UNIT IV THINAI CONCEPT OF TAMILS

3

Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature - Aram Concept of Tamils - Education and Literacy during Sangam Age - Ancient Cities and Ports of Sangam Age - Export and Import during Sangam Age - Overseas Conquest of Cholas.

UNIT V CONTRIBUTION OF TAMILS TO INDIAN NATIONAL MOVEMENT AND INDIAN CULTURE

Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India – Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine – Inscriptions & Manuscripts – Print History of Tamil Books.

TOTAL: 15 PERIODS

TEXT-CUM-REFERENCE BOOKS

- 1. தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

GE3171 PROBLEM SOLVING AND PYTHON PROGRAMMING LABORATORY L T P C 0 0 4 2

COURSE OBJECTIVES:

- To understand the problem solving approaches.
- To learn the basic programming constructs in Python.
- To practice various computing strategies for Python-based solutions to real world problems.
- To use Python data structures lists, tuples, dictionaries.
- To do input/output with files in Python.

EXPERIMENTS:

Note: The examples suggested in each experiment are only indicative. The lab instructor is expected to design other problems on similar lines. The Examination shall not be restricted to the sample experiments listed here.

- 1. Identification and solving of simple real life or scientific or technical problems, and developing flow charts for the same. (Electricity Billing, Retail shop billing, Sin series, weight of a motorbike, Weight of a steel bar, compute Electrical Current in Three Phase AC Circuit, etc.)
- 2. Python programming using simple statements and expressions (exchange the values of two variables, circulate the values of n variables, distance between two points).
- 3. Scientific problems using Conditionals and Iterative loops. (Number series, Number Patterns, pyramid pattern)
- 4. Implementing real-time/technical applications using Lists, Tuples. (Items present in a library/Components of a car/ Materials required for construction of a building –operations of list & tuples)
- 5. Implementing real-time/technical applications using Sets, Dictionaries. (Language, components of an automobile, Elements of a civil structure, etc.- operations of Sets & Dictionaries)
- 6. Implementing programs using Functions. (Factorial, largest number in a list, area of shape)
- 7. Implementing programs using Strings. (reverse, palindrome, character count, replacing characters)
- 8. Implementing programs using written modules and Python Standard Libraries (pandas, numpy. Matplotlib, scipy)
- 9. Implementing real-time/technical applications using File handling. (copy from one file to another, word count, longest word)
- 10. Implementing real-time/technical applications using Exception handling. (divide by zero error, voter's age validity, student mark range validation)
- 11. Exploring Pygame tool.
- 12. Developing a game activity using Pygame like bouncing ball, car race etc.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

On completion of the course, students will be able to:

- CO1: Develop algorithmic solutions to simple computational problems
- CO2: Develop and execute simple Python programs.
- CO3: Implement programs in Python using conditionals and loops for solving problems.
- CO4: Deploy functions to decompose a Python program.
- CO5: Process compound data using Python data structures.
- CO6: Utilize Python packages in developing software applications.

TEXT BOOKS:

- 1. Allen B. Downey, "Think Python: How to Think like a Computer Scientist", 2nd Edition, O'Reilly Publishers, 2016.
- 2. Karl Beecher, "Computational Thinking: A Beginner's Guide to Problem Solving and Programming", 1st Edition, BCS Learning & Development Limited, 2017.

REFERENCES:

- 1. Paul Deitel and Harvey Deitel, "Python for Programmers", Pearson Education, 1st Edition, 2021.
- 2. G Venkatesh and Madhavan Mukund, "Computational Thinking: A Primer for Programmers and Data Scientists", 1st Edition, Notion Press, 2021.
- 3. John V Guttag, "Introduction to Computation and Programming Using Python: With Applications to Computational Modeling and Understanding Data", Third Edition, MIT Press, 2021
- 4. Eric Matthes, "Python Crash Course, A Hands on Project Based Introduction to Programming", 2nd Edition, No Starch Press, 2019.

- 5. https://www.python.org/
- 6. Martin C. Brown, "Python: The Complete Reference", 4th Edition, Mc-Graw Hill, 2018.

COs-PO's & PSO's MAPPING

CO's						PC)'s						PSC	D's
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	-	-	-	-	-	3	2	3	3
2	3	3	3	3	3	-	-	-	-	-	3	2	3	-
3	3	3	3	3	2	-	-	-	-	-	2	-	3	-
4	3	2	-	2	2	-	-	-	-	-	1	-	3	-
5	1	2	-	-	1	-	-	-	-	-	1	-	2	-
6	2	-	-	-	2	-	-	-	-	-	1	-	2	-
AVg.	2	3	3	3	2	-	-	-	-	-	2	2	3	3

1 - low, 2 - medium, 3 - high, '-' - no correlation

BS3171

PHYSICS AND CHEMISTRY LABORATORY

L T P C 0 0 4 2

PHYSICS LABORATORY: (Any Seven Experiments)

COURSE OBJECTIVES:

- To learn the proper use of various kinds of physics laboratory equipment.
- To learn how data can be collected, presented and interpreted in a clear and concise manner
- To learn problem solving skills related to physics principles and interpretation of experimental data.
- To determine error in experimental measurements and techniques used to minimize such error.
- To make the student as an active participant in each part of all lab exercises.
 - 1. Torsional pendulum Determination of rigidity modulus of wire and moment of inertia of regular and irregular objects.
 - 2. Simple harmonic oscillations of cantilever.
 - 3. Non-uniform bending Determination of Young's modulus
 - 4. Uniform bending Determination of Young's modulus
 - 5. Laser- Determination of the wave length of the laser using grating
 - 6. Air wedge Determination of thickness of a thin sheet/wire
 - 7. a) Optical fibre -Determination of Numerical Aperture and acceptance angle b) Compact disc- Determination of width of the groove using laser.
 - 8. Acoustic grating- Determination of velocity of ultrasonic waves in liquids.
 - 9. Ultrasonic interferometer determination of the velocity of sound and compressibility of liquids
 - 10. Post office box -Determination of Band gap of a semiconductor.
 - 11. Photoelectric effect
 - 12. Michelson Interferometer.
 - 13. Melde's string experiment
 - 14. Experiment with lattice dynamics kit.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

Upon completion of the course, the students should be able to

- Understand the functioning of various physics laboratory equipment.
- Use graphical models to analyze laboratory data.
- Use mathematical models as a medium for quantitative reasoning and describing physical reality.
- Access, process and analyze scientific information.
- Solve problems individually and collaboratively.

CO's-PO's & PSO's MAPPING

CO's					PO's	;							F	SO'	S
	1	1 2 3 4 5 6 7 8 9 10 11												2	3
1	3	2	3	1	1	-	-	-	-	-	-	-	-	-	-
2	3	3	2	1	1	-	-	-	-	-	-	-	-	-	-
3	3	2	3	1	1	-	-	-	-	-	-	-	-	-	-
4	3	3	2	1	1	-	-	-	-	-	-	-	-	-	-
5	3	2	3	1	1	-	-	-	-	-	-	-	-	-	-
AVG	3	2.4	2.6	1	1										

- 1-Low,2-Medium,3-High,"-"-no correlation
- Note: the average value of this course to be used for program articulation matrix.

CHEMISTRY LABORATORY: (Any seven experiments to be conducted)

COURSE OBJECTIVES:

- To inculcate experimental skills to test basic understanding of water quality parameters, such as, acidity, alkalinity, hardness, DO, chloride and copper.
- To induce the students to familiarize with electroanalytical techniques such as, pH metry, potentiometry and conductometry in the determination of impurities in aqueous solutions.
- To demonstrate the analysis of metals and alloys.
- To demonstrate the synthesis of nanoparticles
 - 1. Preparation of Na₂CO₃ as a primary standard and estimation of acidity of a water sample using the primary standard
 - 2. Determination of types and amount of alkalinity in water sample.
 - Split the first experiment into two
 - 3. Determination of total, temporary & permanent hardness of water by EDTA method.
 - 4. Determination of DO content of water sample by Winkler's method.
 - 5. Determination of chloride content of water sample by Argentometric method.
 - 6. Estimation of copper content of the given solution by lodometry.
 - 7. Estimation of TDS of a water sample by gravimetry.
 - 8. Determination of strength of given hydrochloric acid using pH meter.
 - 9. Determination of strength of acids in a mixture of acids using conductivity meter.
 - 10. Conductometric titration of barium chloride against sodium sulphate (precipitation titration)
 - 11. Estimation of iron content of the given solution using potentiometer.
 - 12. Estimation of sodium /potassium present in water using flame photometer.
 - 13. Preparation of nanoparticles (TiO₂/ZnO/CuO) by Sol-Gel method.
 - 14. Estimation of Nickel in steel
 - 15. Proximate analysis of Coal

TOTAL: 30 PERIODS

COURSE OUTCOMES:

- To analyse the quality of water samples with respect to their acidity, alkalinity, hardness and DO.
- To determine the amount of metal ions through volumetric and spectroscopic techniques
- To analyse and determine the composition of alloys.
- To learn simple method of synthesis of nanoparticles
- To quantitatively analyse the impurities in solution by electroanalytical techniques

TEXT BOOK:

1. J. Mendham, R. C. Denney, J.D. Barnes, M. Thomas and B. Sivasankar, Vogel's Textbook of Quantitative Chemical Analysis (2009).

CO-PO & PSO MAPPING

СО			P)									PS	SO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	-	1	-	-	2	2	-	-	-	-	2	-	-	-
2	3	1	2	-	-	1	2	-	-	-	-	1	•	-	-
3	3	2	1	1	-	-	1	-	-	-	-	-	-	-	-
4	2	1	2	-	-	2	2	-	-	-	-	-	-	-	-
5	2	1	2	-	1	2	2	-	-	-	-	1		-	-
Avg.	2.6	1.3	1.6	1	1	1.4	1.8	-	-	-	-	1.3	-	-	-

¹⁻low, 2-medium, 3-high, '-"- no correlation

GE3172

ENGLISH LABORATORY

L T P C 0 0 2 1

OBJECTIVES:

- To improve the communicative competence of learners
- To help learners use language effectively in academic /work contexts
- To develop various listening strategies to comprehend various types of audio materials like lectures, discussions, videos etc.
- To build on students' English language skills by engaging them in listening, speaking and grammar learning activities that are relevant to authentic contexts.
- To use language efficiently in expressing their opinions via various media.

UNIT I INTRODUCTION TO FUNDAMENTALS OF COMMUNICATION

6

Listening for general information-specific details- conversation: Introduction to classmates - Audio / video (formal & informal); Telephone conversation; Listening to voicemail & messages; Listening and filling a form. Speaking - making telephone calls-Self Introduction; Introducing a friend; - politeness strategies- making polite requests, making polite offers, replying to polite requests and offers- understanding basic instructions(filling out a bank application for example).

UNIT II NARRATION AND SUMMATION

6

Listening - Listening to podcasts, anecdotes / stories / event narration; documentaries and interviews with celebrities. Speaking - Narrating personal experiences / events-Talking about current and temporary situations & permanent and regular situations* - describing experiences and feelings- engaging in small talk- describing requirements and abilities.

UNIT III DESCRIPTION OF A PROCESS / PRODUCT

6

Listening - Listen to product and process descriptions; a classroom lecture; and advertisements about products. Speaking - Picture description- describing locations in workplaces- Giving instruction to use the product- explaining uses and purposes- Presenting a product- describing shapes and sizes and weights- talking about quantities(large & small)-talking about precautions.

UNIT IV CLASSIFICATION AND RECOMMENDATIONS

6

Listening – Listening to TED Talks; Listening to lectures - and educational videos. Speaking – Small Talk; discussing and making plans-talking about tasks-talking about progress- talking about positions and directions of movement-talking about travel preparations- talking about transportation

UNIT V EXPRESSION

6

Listening – Listening to debates/ discussions; different viewpoints on an issue; and panel discussions. Speaking –making predictions- talking about a given topic-giving opinions-understanding a website-describing processes

TOTAL: 30 PERIODS

LEARNING OUTCOMES:

At the end of the course, learners will be able

- To listen to and comprehend general as well as complex academic information
- To listen to and understand different points of view in a discussion
- To speak fluently and accurately in formal and informal communicative contexts
- To describe products and processes and explain their uses and purposes clearly and accurately
- To express their opinions effectively in both formal and informal discussions

ASSESSMENT PATTERN

- One online / app based assessment to test listening /speaking
- End Semester **ONLY** listening and speaking will be conducted online.
- Proficiency certification is given on successful completion of listening and speaking internal test and end semester exam.

CO-PO & PSO MAPPING

СО			F	O									PS	60	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	3	1	3	3	3	3	3	3	3	-	-	-
2	3	3	3	3	1	3	3	3	3	3	3	3	-	-	-
3	3	3	3	3	1	3	3	3	3	3	3	3	-	-	-
4	3	3	3	3	1	3	3	3	3	3	3	3	-	-	-
5	3	3	3	3	1	3	3	3	3	3	3	3	-	-	-
AVg.	3	3	3	3	1	3	3	3	3	3	3	3	-	-	_

1-low, 2-medium, 3-high, '-"- no correlation

Note: The average value of this course to be used for program articulation matrix.

HS3252

PROFESSIONAL ENGLISH - II

L T P C 2 00 2

OBJECTIVES:

- To engage learners in meaningful language activities to improve their reading and writing skills
- To learn various reading strategies and apply in comprehending documents in professional context.
- To help learners understand the purpose, audience, contexts of different types of writing
- To develop analytical thinking skills for problem solving in communicative contexts
- To demonstrate an understanding of job applications and interviews for internship and placements

UNIT I MAKING COMPARISONS

6

Reading - Reading advertisements, user manuals, brochures; Writing - Professional emails, Email etiquette - Compare and Contrast Essay; Grammar - Mixed Tenses, Prepositional phrases

UNIT II EXPRESSING CAUSAL RELATIONS IN SPEAKING AND WRITING 6

Reading - Reading longer technical texts- Cause and Effect Essays, and Letters / emails of complaint, Writing - Writing responses to complaints. Grammar - Active Passive Voice transformations, Infinitive and Gerunds

UNIT III PROBLEM SOLVING

6

Reading - Case Studies, excerpts from literary texts, news reports etc. Writing – Letter to the Editor, Checklists, Problem solution essay / Argumentative Essay. Grammar – Error correction; If conditional sentences

UNIT IV REPORTING OF EVENTS AND RESEARCH

6

TOTAL: 30 PERIODS

Reading –Newspaper articles; Writing – Recommendations, Transcoding, Accident Report, Survey Report Grammar – Reported Speech, Modals Vocabulary – Conjunctions- use of prepositions

UNIT V THE ABILITY TO PUT IDEAS OR INFORMATION COGENTLY 6

Reading – Company profiles, Statement of Purpose, (SOP), an excerpt of interview with professionals; Writing – Job / Internship application – Cover letter & Resume; Grammar – Numerical adjectives, Relative Clauses.

OUTCOMES:

At the end of the course, learners will be able

- To compare and contrast products and ideas in technical texts.
- To identify and report cause and effects in events, industrial processes through technical texts
- To analyse problems in order to arrive at feasible solutions and communicate them in the written format.
- To present their ideas and opinions in a planned and logical manner
- To draft effective resumes in the context of job search.

TEXT BOOKS:

- 1. English for Engineers & Technologists (2020 edition) Orient Blackswan Private Ltd. Department of English, Anna University.
- 2. English for Science & Technology Cambridge University Press 2021.
- 3. Authored by Dr. Veena Selvam, Dr. Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani, Department of English, Anna University.

REFERENCES:

- Raman. Meenakshi, Sharma. Sangeeta (2019). Professional English. Oxford university press. New Delhi.
- 2. Improve Your Writing ed. V.N. Arora and Laxmi Chandra, Oxford Univ. Press, 2001, NewDelhi.
- 3. Learning to Communicate Dr. V. Chellammal. Allied Publishers, New Delhi, 2003
- 4. Business Correspondence and Report Writing by Prof. R.C. Sharma & Krishna Mohan, Tata McGraw Hill & Co. Ltd., 2001, New Delhi.
- 5. Developing Communication Skills by Krishna Mohan, Meera Bannerji- Macmillan India Ltd. 1990, Delhi.

ASSESSMENT PATTERN

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence.

CO-PO & PSO MAPPING

СО			Р	0									PS	80	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	3	3	3	3	3	2	3	3	3	-	-	-
2	3	3	3	3	3	3	3	3	2	3	3	3	-	-	-
3	3	3	3	3	3	3	3	3	2	3	3	3	-	-	-
4	3	3	3	3	2	3	3	3	2	3	3	3	-	-	-
5	-	-	-	-	-	-	-	-	3	3	3	3	-	-	-
AVg.	3	3	3	3	2.75	3	3	3	2.2	3	3	3	-	-	-

- 1-low, 2-medium, 3-high, '-"- no correlation
- **Note:** The average value of this course to be used for program articulation matrix.

MA3251

STATISTICS AND NUMERICAL METHODS

L T P C 3 1 0 4

COURSE OBJECTIVES:

- This course aims at providing the necessary basic concepts of a few statistical and numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.
- To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- To introduce the basic concepts of solving algebraic and transcendental equations.
- To introduce the numerical techniques of interpolation in various intervals and numerical techniques of differentiation and integration which plays an important role in engineering and technology disciplines.
- To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.

UNIT I TESTING OF HYPOTHESIS

9+3

Sampling distributions - Tests for single mean, proportion and difference of means (Large and small samples) – Tests for single variance and equality of variances – Chi square test for goodness of fit – Independence of attributes.

UNIT II DESIGN OF EXPERIMENTS

9+3

TOTAL: 60 PERIODS

One way and two way classifications - Completely randomized design – Randomized block design – Latin square design - 2² factorial design.

UNIT III SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS 9+3

Solution of algebraic and transcendental equations - Fixed point iteration method - Newton Raphson method- Solution of linear system of equations - Gauss elimination method - Pivoting - Gauss Jordan method - Iterative methods of Gauss Jacobi and Gauss Seidel - Eigenvalues of a matrix by Power method and Jacobi's method for symmetric matrices.

UNIT IV INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL INTEGRATION 9+3

Lagrange's and Newton's divided difference interpolations – Newton's forward and backward difference interpolation – Approximation of derivates using interpolation polynomials – Numerical single and double integrations using Trapezoidal and Simpson's 1/3 rules.

UNIT V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 9+3 Single step methods: Taylor's series method - Euler's method - Modified Euler's method - Fourth order Runge-Kutta method for solving first order differential equations - Multi step methods: Milne's and Adams - Bash forth predictor corrector methods for solving first order differential equations.

COURSE OUTCOMES:

Upon successful completion of the course, students will be able to:

- Apply the concept of testing of hypothesis for small and large samples in real life problems.
- Apply the basic concepts of classifications of design of experiments in the field of agriculture.
- Appreciate the numerical techniques of interpolation in various intervals and apply the numerical techniques of differentiation and integration for engineering problems.
- Understand the knowledge of various techniques and methods for solving first and second order ordinary differential equations.
- Solve the partial and ordinary differential equations with initial and boundary conditions by using certain techniques with engineering applications.

TEXT BOOKS:

- 1. Grewal, B.S., and Grewal, J.S., "Numerical Methods in Engineering and Science", Khanna Publishers, 10th Edition, New Delhi, 2015.
- 2. Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 8th Edition, 2015.

REFERENCES:

- 1. Burden, R.L and Faires, J.D, "Numerical Analysis", 9th Edition, Cengage Learning, 2016.
- 2. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 8th Edition, 2014.
- 3. Gerald. C.F. and Wheatley. P.O. "Applied Numerical Analysis" Pearson Education, Asia, New Delhi, 7th Edition, 2007.
- 4. Gupta S.C. and Kapoor V. K., "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi, 12th Edition, 2020.
- 5. Spiegel. M.R., Schiller. J. and Srinivasan. R.A., "Schaum's Outlines on Probability and Statistics ", Tata McGraw Hill Edition, 4th Edition, 2012.
- 6. Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineers and Scientists", 9th Edition, Pearson Education, Asia, 2010.

	РО	PS	PS	PS											
	01	02	03	04	05	06	07	08	09	10	11	12	01	O2	O3
CO1	3	3	1	1	1	0	0	0	2	0	2	3	-	-	-
CO2	3	3	1	1	1	0	0	0	2	0	2	3	-	-	-
CO3	3	3	1	1	1	0	0	0	2	0	2	3	-	-	-
CO4	3	3	1	1	1	0	0	0	2	0	2	3	-	-	-
CO5	3	3	1	1	1	0	0	0	2	0	2	3	-	-	-
Avg	3	3	1	1	1	0	0	0	2	0	2	3	-	-	-

PH3251

MATERIALS SCIENCE

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To make the students to understand the basics of crystallography and its importance in studying materials properties.
- To understand the electrical properties of materials including free electron theory, applications of quantum mechanics and magnetic materials.
- To instil knowledge on physics of semiconductors, determination of charge carriers and device applications
- To establish a sound grasp of knowledge on different optical properties of materials, optical displays and applications
- To inculcate an idea of significance of nano structures, quantum confinement and ensuing nano device applications.

UNIT I CRYSTALLOGRAPHY

9

Crystal structures: BCC, FCC and HCP – directions and planes - linear and planar densities – crystal imperfections- edge and screw dislocations – grain and twin boundaries - Burgers vector and elastic strain energy- Slip systems, plastic deformation of materials - Polymorphism – phase changes – nucleation and growth – homogeneous and heterogeneous nucleation.

UNIT II ELECTRICAL AND MAGNETIC PROPERTIES OF MATERIALS

Classical free electron theory - Expression for electrical conductivity – Thermal conductivity, expression - Quantum free electron theory :Tunneling – degenerate states – Fermi- Dirac statistics – Density of energy states – Electron in periodic potential – Energy bands in solids – tight binding approximation - Electron effective mass – concept of hole. Magnetic materials: Dia, para and ferromagnetic effects – paramagnetism in the conduction electrons in metals – exchange interaction and ferromagnetism – quantum interference devices – GMR devices.

UNIT III SEMICONDUCTORS AND TRANSPORT PHYSICS

9

Intrinsic Semiconductors – Energy band diagram – direct and indirect band gap semiconductors – Carrier concentration in intrinsic semiconductors – extrinsic semiconductors - Carrier concentration in N-type & P-type semiconductors – Variation of carrier concentration with temperature – Carrier transport in Semiconductors: Drift, mobility and diffusion – Hall effect and devices – Ohmic contacts – Schottky diode.

UNIT IV OPTICAL PROPERTIES OF MATERIALS

9

Classification of optical materials – Optical processes in semiconductors: optical absorption and emission, charge injection and recombination, optical absorption, loss and gain. Optical processes in quantum wells – Optoelectronic devices: light detectors and solar cells – light emitting diode – laser diode - optical processes in organic semiconductor devices – excitonic state – Electro-optics and nonlinear optics: Modulators and switching devices – plasmonics.

UNIT V NANOELECTRONIC DEVICES

9

Quantum confinement – Quantum structures – quantum wells, wires and dots – Zener-Bloch oscillations – Resonant tunneling – quantum interference effects - mesoscopic structures - Single electron phenomena – Single electron Transistor. Semiconductor photonic structures – 1D, 2D and 3D photonic crystal. Active and passive optoelectronic devices – photo processes – spintronics – carbon nanotubes: Properties and applications.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of the course, the students should be able to

- know basics of crystallography and its importance for varied materials properties
- gain knowledge on the electrical and magnetic properties of materials and their applications
- understand clearly of semiconductor physics and functioning of semiconductor devices
- understand the optical properties of materials and working principles of various optical devices
- appreciate the importance of functional nanoelectronic devices.

TEXT BOOKS:

- 1. V.Raghavan. Materials Science and Engineering: A First Course, Prentice Hall India Learning Private Limited, 2015.
- 2. S.O. Kasap, Principles of Electronic Materials and Devices, Mc-Graw Hill, 2018.
- 3. Jasprit Singh, Semiconductor Devices: Basic Principles, Wiley (India), 2007.
- 4. Jasprit Singh, Semiconductor Optoelectronics: Physics and Technology, Mc-Graw Hill India (2019)
- 5. G.W.Hanson. Fundamentals of Nanoelectronics. Pearson Education (Indian Edition), 2009.

REFERENCES:

- 1. R.Balasubramaniam, Callister's Materials Science and Engineering. Wiley (Indian Edition), 2014.
- 2. Wendelin Wright and Donald Askeland, Essentials of Materials Science and Engineering, CL Engineering, 2013.
- 3. Robert F.Pierret, Semiconductor Device Fundamentals, Pearson, 2006
- 4. Pallab Bhattacharya, Semiconductor Optoelectronic Devices, Pearson, 2017
- 5. Ben Rogers, Jesse Adams and Sumita Pennathur, Nanotechnology: Understanding Small Systems, CRC Press, 2017.

CO's-PO's & PSO's MAPPING

CO's						PC	D's						I	PSO's	5
	1	2	3	11	12	1	2	3							
1	3	2	1	2	1	1	-	-	-	-	-	-	-	-	-
2	3	2	1	1	2	1	1	-	-	-	-	-	-	-	-
3	3	2	2	2	2	1	-	-	-	-	-	-	-	-	-
4	3	2	2	1	2	2	-	-	-	-	-	1	-	-	-
5	3	2	2	1	2	1	-	-	-	-	-	-	-	-	-
AVG	3	2	1.6	1.4	1.8	1.2	1					1			

1-Low,2-Medium,3-High,"-"-no correlation

Note: the average value of this course to be used for program articulation matrix.

BE3251 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To introduce the basics of electric circuits and analysis
- To impart knowledge in the basics of working principles and application of electrical machines
- To introduce analog devices and their characteristics
- To educate on the fundamental concepts of digital electronics
- To introduce the functional elements and working of measuring instruments

UNIT I ELECTRICAL CIRCUITS

9

DC Circuits: Circuit Components: Conductor, Resistor, Inductor, Capacitor – Ohm's Law - Kirchhoff's Laws –Independent and Dependent Sources – Simple problems- Nodal Analysis, Mesh analysis with Independent sources only (Steady state)

Introduction to AC Circuits and Parameters: Waveforms, Average value, RMS Value, Instantaneous power, real power, reactive power and apparent power, power factor – Steady state analysis of RLC circuits (Simple problems only)

UNIT II ELECTRICAL MACHINES

9

Construction and Working principle- DC Separately and Self excited Generators, EMF equation, Types and Applications. Working Principle of DC motors, Torque Equation, Types and Applications. Construction, Working principle and Applications of Transformer, Three phase Alternator, Synchronous motor and Three Phase Induction Motor.

UNIT III ANALOG ELECTRONICS

9

Resistor, Inductor and Capacitor in Electronic Circuits- Semiconductor Materials: Silicon &Germanium – PN Junction Diodes, Zener Diode –Characteristics Applications – Bipolar Junction Transistor-Biasing, JFET, SCR, MOSFET,IGBT – Types, I-V Characteristics and Applications, Rectifier and Inverters

UNIT IV DIGITAL ELECTRONICS

9

Review of number systems, binary codes, error detection and correction codes, Combinational logic - representation of logic functions-SOP and POS forms, K-map representations - minimization using K maps (Simple Problems only)

UNIT V MEASUREMENTS AND INSTRUMENTATION

9

Functional elements of an instrument, Standards and calibration, Operating Principle, types - Moving Coil and Moving Iron meters, Measurement of three phase power, Energy Meter, Instrument Transformers-CT and PT, DSO- Block diagram- Data acquisition.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completing this course, the students will be able to

- 1. Compute the electric circuit parameters for simple problems
- 2. Explain the working principle and applications of electrical machines
- 3. Analyze the characteristics of analog electronic devices
- 4. Explain the basic concepts of digital electronics
- 5. Explain the operating principles of measuring instruments

TEXT BOOKS:

1. Kothari DP and I.J Nagrath, "Basic Electrical and Electronics Engineering", Second Edition, McGraw Hill Education, 2020

- 2. S.K.Bhattacharya "Basic Electrical and Electronics Engineering", Pearson Education, Second Edition, 2017.
- 3. Sedha R.S., "A textbook book of Applied Electronics", S. Chand & Co., 2008
- 4. James A .Svoboda, Richard C. Dorf, "Dorf's Introduction to Electric Circuits", Wiley, 2018.
- 5. A.K. Sawhney, Puneet Sawhney 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, 2015.

REFERENCES:

- 1. Kothari DP and I.J Nagrath, "Basic Electrical Engineering", Fourth Edition, McGraw Hill Education, 2019.
- 2. Thomas L. Floyd, 'Digital Fundamentals', 11th Edition, Pearson Education, 2017.
- 3. Albert Malvino, David Bates, 'Electronic Principles, McGraw Hill Education; 7th edition, 2017
- 4. Mahmood Nahvi and Joseph A. Edminister, "Electric Circuits", Schaum' Outline Series, McGraw Hill, 2002.
- 5. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw-Hill, New Delhi, 2010

		N	/lappi	ng of	COs	with	PC	s aı	nd	PSOs	;				
COs/POs&P					F	Os							PSC)s	
SOs 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 CO1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1															
CO1 2 2 1 1 2 2 1 2 1 2 2 1 2 2 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2															1
CO2 2 2 1 1 2 1														1	
CO3	2	1	1					1				2			1
CO4	2	2	1					1				2			1
CO5	2	2	1					1				2			1
CO/PO &	2	1.8	1					1				2			1
PSO Average															
		1	– Slig	ht, 2 -	- Mod	erat	e, 3	- S	ubs	stantia	al				

GE3251

ENGINEERING GRAPHICS

L T P C 2 0 4 4

COURSE OBJECTIVES:

The main learning objective of this course is to prepare the students for:

- 1. Drawing engineering curves.
- 2. Drawing freehand sketch of simple objects.
- 3. Drawing orthographic projection of solids and section of solids.
- 4. Drawing development of solids
- 5. Drawing isometric and perspective projections of simple solids.

CONCEPTS AND CONVENTIONS (Not for Examination)

Importance of graphics in engineering applications - Use of drafting instruments - BIS conventions and specifications — Size, layout and folding of drawing sheets — Lettering and dimensioning.

UNIT I PLANE CURVES

6+12

Basic Geometrical constructions, Curves used in engineering practices: Conics — Construction of ellipse, parabola and hyperbola by eccentricity method — Construction of cycloid — construction of involutes of square and circle — Drawing of tangents and normal to the above curves.

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACE

6+12

Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III PROJECTION OF SOLIDS AND FREEHAND SKETCHING 6+12

Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes and parallel to the other by rotating object method. Visualization concepts and Free Hand sketching: Visualization principles — Representation of Three Dimensional objects — Layout of views- Freehand sketching of multiple views from pictorial views of objects.

Practicing three dimensional modeling of simple objects by CAD Software (Not for examination)

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES 6 +12

Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other — obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids — Prisms, pyramids cylinders and cones.

Practicing three dimensional modeling of simple objects by CAD Software (Not for examination)

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS 6+12

Principles of isometric projection — isometric scale - Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions - Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method.

Practicing three dimensional modeling of isometric projection of simple objects by CAD Software (Not for examination)

TOTAL: (L=30; P=60) 90 PERIODS

COURSE OUTCOMES:

On successful completion of this course, the student will be able to

- Use BIS conventions and specifications for engineering drawing.
- Construct the conic curves, involutes and cycloid.
- Solve practical problems involving projection of lines.
- Draw the orthographic, isometric and perspective projections of simple solids.
- Draw the development of simple solids.

TEXT BOOKS:

- 1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 53rd Edition, 2019.
- 2. Natrajan K.V., "A Text Book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2018.
- 3. Parthasarathy, N. S. and Vela Murali, "Engineering Drawing", Oxford University Press, 2015

REFERENCES:

- 1. Basant Agarwal and Agarwal C.M., "Engineering Drawing", McGraw Hill, 2nd Edition, 2019
- 2. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Publications, Bangalore, 27th Edition, 2017.
- 3. Luzzader, Warren.J. and Duff, John M., "Fundamentals of Engineering Drawing with an

- introduction to Interactive Computer Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
- 4. Parthasarathy N. S. and Vela Murali, "Engineering Graphics", Oxford University, Press, New Delhi, 2015.
- 5. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson Education India, 2nd Edition,
- 6. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008.

Publication of Bureau of Indian Standards:

- 1. IS 10711 2001: Technical products Documentation Size and lay out of drawing
- 2. IS 9609 (Parts 0 & 1) 2001: Technical products Documentation Lettering.
- 3. IS 10714 (Part 20) 2001 & SP 46 2003: Lines for technical drawings.
- 4. IS 11669 1986 & SP 46 —2003: Dimensioning of Technical Drawings.
- 5. IS 15021 (Parts 1 to 4) 2001: Technical drawings Projection Methods.

Special points applicable to University Examinations on Engineering Graphics:

- 1. There will be five questions, each of either or type covering all units of the syllabus.
- 2. All questions will carry equal marks of 20 each making a total of 100.
- 3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit solution within A3
- 4. The examination will be conducted in appropriate sessions on the same day

СО						Р	0							PSO	
00	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	1	2		2					3		2	2	2	
2	3	1	2		2					3		2	2	2	
3	3	1	2		2					3		2	2	2	
4	3	1	2		2					3		2	2	2	
5	3	1	2		2					3		2	2	2	
Avg.	3	1	2		2					3		2	2	2	
Low (1);	Mediur	m (2);	High (3)				•							·

GE3252

தமிழரும் தொழில்நுட்பமும்

LTPC 1 0 0 1

நெசவு மற்றும் பானைத் தொழில்நுட்பம்: அலகு l

சங்க காலத்தில் நெசவுத் தொழில் – பானைத் தொழில்நுட்பம் - கருப்பு சிவப்பு பாண்டங்கள் – பாண்டங்களில் கீறல் குறியீடுகள்.

வடிவமைப்பு மற்றும் கட்டிடத் தொழில்நுட்பம்: அலகு II

3

சங்க காலத்தில் வடிவமைப்பு மற்றும் கட்டுமானங்கள் & சங்க காலத்தில் பொருட்களில் காலத்தில் வீட்டுப் வடிவமைப்பு-சங்க கட்டுமான பொருட்களும் நடுகல்லும் – சிலப்பதிகாரத்தில் மேடை அமைப்பு பற்றிய விவரங்கள் - மாமல்லபுரச் சிற்பங்களும், கோவில்களும் – சோழர் காலத்துப் பெருங்கோயில்கள் மற்றும் பிற வழிபாட்டுத் தலங்கள் – நாயக்கர் காலக் கோயில்கள் - மாதிரி கட்டமைப்புகள் பற்றி அறிதல், மதுரை மீனாட்சி அம்மன் ஆலயம் மற்றும் திருமலை நாயக்கர் மஹால் – செட்டிநாட்டு வீடுகள் – பிரிட்டிஷ் காலத்தில் சென்னையில் இந்தோ-சாரோசெனிக் கட்டிடக் கலை.

அலகு III <u>உற்பத்தித் தொழில் நுட்பம்</u>:

கப்பல் கட்டும் கலை – உலோகவியல் – இரும்புத் தொழிற்சாலை – இரும்பை உருக்குதல், எஃகு – வரலாற்றுச் சான்றுகளாக செம்பு மற்றும் தங்க நாணயங்கள் – நாணயங்கள் அச்சடித்தல் – மணி உருவாக்கும் தொழிற்சாலைகள் – கல்மணிகள், கண்ணாடி மணிகள் – சுடுமண் மணிகள் – சங்கு மணிகள் – எலும்புத்துண்டுகள் – தொல்லியல் சான்றுகள் – சிலப்பதிகாரத்தில் மணிகளின் வகைகள்.

அலகு IV **வேளாண்மை மற்றும் நீர்ப்பாசனத் தொழில் நுட்பம்**: 3 சோழர்காலக் குமுழித் தூம்பின் அணை, ஏரி, குளங்கள், மதகு – பராமரிப்பு முக்கியத்துவம் கால்நடை கால்நடைகளுக்காக வடிவமைக்கப்பட்ட கிணறுகள் – வேளாண்மை மற்றும் வேளாண்மைச் சார்ந்த செயல்பாடுகள் – கடல்சார் அறிவு – மீன்வளம் – முத்து மற்றும் முத்துக்குளித்தல் – பெருங்கடல் குறித்த பண்டைய அறிவு – அறிவுசார் சமூகம்.

அலகு V அறிவியல் தமிழ் மற்றும் கணித்தமிழ்: 3 அறிவியல் தமிழின் வளர்ச்சி –கணித்தமிழ் வளர்ச்சி - தமிழ் நூல்களை மின்பதிப்பு செய்தல் – தமிழ் மென்பொருட்கள் உருவாக்கம் – தமிழ் இணையக் கல்விக்கழகம் – தமிழ் மின் நூலகம் – இணையத்தில் தமிழ் அகராதிகள் – சொற்குவைத் திட்டம்.

TOTAL: 15 PERIODS

3

TEXT-CUM-REFERENCE BOOKS

- 1. தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

GE3252

TAMILS AND TECHNOLOGY

L T PC 1 0 01

UNIT I WEAVING AND CERAMIC TECHNOLOGY

3

Weaving Industry during Sangam Age – Ceramic technology – Black and Red Ware Potteries (BRW) – Graffiti on Potteries.

UNIT II DESIGN AND CONSTRUCTION TECHNOLOGY

3

Designing and Structural construction House & Designs in household materials during Sangam Age - Building materials and Hero stones of Sangam age - Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple)- Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during British Period.

UNIT III MANUFACTURING TECHNOLOGY

3

Art of Ship Building - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and gold- Coins as source of history - Minting of Coins – Beads making-industries Stone beads - Glass beads - Terracotta beads - Shell beads/ bone beats - Archeological evidences - Gem stone types described in Silappathikaram.

UNIT IV AGRICULTURE AND IRRIGATION TECHNOLOGY

3

Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry - Wells designed for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fisheries - Pearl - Conche diving - Ancient Knowledge of Ocean - Knowledge Specific Society.

UNIT V SCIENTIFIC TAMIL & TAMIL COMPUTING

3

Development of Scientific Tamil - Tamil computing - Digitalization of Tamil Books - Development of Tamil Software - Tamil Virtual Academy - Tamil Digital Library - Online Tamil Dictionaries - Sorkuvai Project.

TOTAL: 15 PERIODS

TEXT-CUM-REFERENCE BOOKS

- 1. தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published

- by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

NCC CREDIT COURSE LEVEL 1*

NX3251	(ARMY WING) NCC Credit Course Level - I	L 2	T 0	P 0	C
NCC GE NCC 1 NCC 2 NCC 3 NCC 4	NERAL Aims, Objectives & Organization of NCC Incentives Duties of NCC Cadet NCC Camps: Types & Conduct				6 1 2 1 2
NATION NI 1 NI 2 NI 3 NI 4	AL INTEGRATION AND AWARENESS National Integration: Importance & Necessity Factors Affecting National Integration Unity in Diversity & Role of NCC in Nation Building Threats to National Security				4 1 1 1
PERSON PD 1 PD 2 PD 3	NALITY DEVELOPMENT Self-Awareness, Empathy, Critical & Creative Thinking, Decenter Problem Solving Communication Skills Group Discussion: Stress & Emotions	cision I	Makinç	g and	7 2 3 2
LEADER L 1 L 2	SHIP Leadership Capsule: Traits, Indicators, Motivation, Moral Va Code Case Studies: Shivaji, Jhasi Ki Rani	alues, I	Honou	ır'	5 3 2
SOCIAL SS 1 SS 4 SS 5 SS 6 SS 7	SERVICE AND COMMUNITY DEVELOPMENT Basics, Rural Development Programmes, NGOs, Contribution Protection of Children and Women Safety Road / Rail Travel Safety New Initiatives Cyber and Mobile Security Awareness	on of Y	outh		8 3 1 1 2 1

TOTAL: 30 PERIODS

NCC Credit Course Level 1*

NX3252	(NAVAL WING) NCC Credit Course Level - I	L 2	T 0	P 0	C 2
NCC GEN	NERAL				6
NCC 1	Aims, Objectives & Organization of NCC				1
NCC 2	Incentives				2
NCC 3	Duties of NCC Cadet				1
NCC 4	NCC Camps: Types & Conduct				2
NATIONA	AL INTEGRATION AND AWARENESS				4
NI 1	National Integration: Importance & Necessity				1
NI 2	Factors Affecting National Integration				1
NI 3	Unity in Diversity & Role of NCC in Nation Building				1
NI 4	Threats to National Security				1
PERSON	ALITY DEVELOPMENT				7
PD 1	Self-Awareness, Empathy, Critical & Creative Thinking, Decision Problem Solving	Mak	ing ar	nd	2
PD 2	Communication Skills				3
PD 3	Group Discussion: Stress & Emotions				2
LEADER	SHIP				5
L 1	Leadership Capsule: Traits, Indicators, Motivation, Moral Values,	, Hon	our C	ode	3
L 2	Case Studies: Shivaji, Jhasi Ki Rani				2
SOCIAL	SERVICE AND COMMUNITY DEVELOPMENT				8
SS 1	Basics, Rural Development Programmes, NGOs, Contribution of	Yout	th		3
SS 4	Protection of Children and Women Safety				1
SS 5	Road / Rail Travel Safety				1
SS 6	New Initiatives				2
SS 7	Cyber and Mobile Security Awareness				1

TOTAL: 30 PERIODS

NCC Credit Course Level 1*

NX3253	(AIR FORCE WING) NCC Credit Course Level - I	L 2	T 0	P 0	C 2
NCC GEN	NERAL	6			
NCC 1 NCC 2 NCC 3 NCC 4	Aims, Objectives & Organization of NCC Incentives Duties of NCC Cadet NCC Camps: Types & Conduct	6		1 2 1	2
NATIONA	AL INTEGRATION AND AWARENESS	4			
NI 1 NI 2 NI 3 NI 4	National Integration: Importance & Necessity Factors Affecting National Integration Unity in Diversity & Role of NCC in Nation Building Threats to National Security	4			1 1 1
PERSON	ALITY DEVELOPMENT				7
PD 1 PD 2 PD 3	Self-Awareness, Empathy, Critical & Creative Thinking, Decisi Problem Solving Communication Skills Group Discussion: Stress & Emotions	on Maki	ng an	d	2 3 2
LEADER	SHIP				5
L 1 L 2	Leadership Capsule: Traits, Indicators, Motivation, Moral Value Case Studies: Shivaji, Jhasi Ki Rani	es, Hon	our Co	ode	3 2
SS 1 SS 4 SS 5 SS 6	SERVICE AND COMMUNITY DEVELOPMENT Basics, Rural Development Programmes, NGOs, Contribution Protection of Children and Women Safety Road / Rail Travel Safety New Initiatives	of Yout	h		8 3 1 1 2
SS 7	Cyber and Mobile Security Awareness				ı

TOTAL: 30 PERIODS

GE3271 ENGINEERING PRACTICES LABORATORY L T P C 0 0 4 2

COURSE OBJECTIVES:

The main learning objective of this course is to provide hands on training to the students in:

- 1. Drawing pipe line plan; laying and connecting various pipe fittings used in common household plumbing work; Sawing; planing; making joints in wood materials used in commonhousehold wood work.
- 2. Wiring various electrical joints in common household electrical wire work.
- 3. Welding various joints in steel plates using arc welding work; Machining various simple processes like turning, drilling, tapping in parts; Assembling simple mechanical assembly of common household equipments; Making a tray out of metal sheet using sheet metal work.
- 4. Soldering and testing simple electronic circuits; Assembling and testing simple electronic components on PCB.

GROUP - A (CIVIL & ELECTRICAL)

PART I CIVIL ENGINEERING PRACTICES PLUMBING WORK:

15

- a) Connecting various basic pipe fittings like valves, taps, coupling, unions, reducers, elbows and other components which are commonly used in household.
- b) Preparing plumbing line sketches.
- c) Laying pipe connection to the suction side of a pump
- d) Laying pipe connection to the delivery side of a pump.
- e) Connecting pipes of different materials: Metal, plastic and flexible pipes used inhousehold appliances.

WOOD WORK:

- a) Sawing,
- b) Planing and
- c) Making joints like T-Joint, Mortise joint and Tenon joint and Dovetail joint.

Wood Work Study:

- a) Studying joints in door panels and wooden furniture
- b) Studying common industrial trusses using models.

PART II

ELECTRICAL ENGINEERING PRACTICES

15

- a) Introduction to switches, fuses, indicators and lamps Basic switch board wiring with lamp, fan and three pin socket
- b) Staircase wiring
- c) Fluorescent Lamp wiring with introduction to CFL and LED types.
- d) Energy meter wiring and related calculations/ calibration
- e) Study of Iron Box wiring and assembly
- f) Study of Fan Regulator (Resistor type and Electronic type using Diac/Triac/quadrac)
- g) Study of emergency lamp wiring/Water heater

GROUP - B (MECHANICAL AND ELECTRONICS)

PART III

MECHANICAL ENGINEERING PRACTICES

15

WELDING WORK:

- a) Welding of Butt Joints, Lap Joints, and Tee Joints using arc welding.
- b) Practicing gas welding.

BASIC MACHINING WORK:

a) (simple)Turning.

- b) (simple)Drilling.
- c) (simple)Tapping.

ASSEMBLY WORK:

- a) Assembling a centrifugal pump.
- b) Assembling a household mixer.
- c) Assembling an airconditioner.

SHEET METAL WORK:

a) Making of a square tray

FOUNDRY WORK:

a) Demonstrating basic foundry operations.

PART IV ELECTRONIC ENGINEERING PRACTICES

15

SOLDERING WORK:

a) Soldering simple electronic circuits and checking continuity.

ELECTRONIC ASSEMBLY AND TESTING WORK:

a) Assembling and testing electronic components on a small PCB.

ELECTRONIC EQUIPMENT STUDY:

- a) Study an elements of smart phone..
- b) Assembly and dismantle of LED TV.
- c) Assembly and dismantle of computer/ laptop

TOTAL = 60 PERIODS

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

- 1. Draw pipe line plan; lay and connect various pipe fittings used in common household plumbing work; Saw; plan; make joints in wood materials used in common household wood work.
- 2. Wire various electrical joints in common household electrical wire work.
- 3. Weld various joints in steel plates using arc welding work; Machine various simple processes like turning, drilling, tapping in parts; Assemble simple mechanical assembly of common household equipments; Make a tray out of metal sheet using sheet metal work.
- 4. Solder and test simple electronic circuits; Assemble and test simple electronic components on PCB.

						Р	0							PSO	
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2			1	1	1					2	2	1	1
2	3	2			1	1	1					2	2	1	1
3	3	2			1	1	1					2	2	1	1
Avg.	3	2			1	1	1					2	2	1	1
Low (1)	; Me	dium (2) ;	High	(3)										

BE3271 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING LABORATORY L T P C

COURSE OBJECTIVES:

- To train the students in conducting load tests on electrical machines
- To gain practical experience in characterizing electronic devices
- To train the students to use DSO for measurements.

LIST OF EXPERIMENTS

- 1. Verification of ohms and Kirchhoff's Laws.
- 2. Load test on DC Shunt Motor.
- 3. Load test on Self Excited DC Generator
- 4. Load test on Single phase Transformer
- 5. Load Test on Induction Motor
- 6. Characteristics of PN and Zener Diodes
- 7. Characteristics of BJT, SCR and MOSFET
- 8. Half wave and Full Wave rectifiers
- 9. Study of Logic Gates
- 10. Implementation of Binary Adder and Subtractor
- 11. Study of DSO

TOTAL: 60 PERIODS

COURSE OUTCOMES:

After completing this course, the students will be able to

- 1. Use experimental methods to verify the Ohm's and Kirchhoff's Laws.
- 2. Analyze experimentally the load characteristics of electrical machines
- 3. Analyze the characteristics of basic electronic devices
- 4. Use DSO to measure the various parameters

		N	Ларрі	ng of	COs	wit	h F	Os ar	nd PS	SOs					
COs/POs&P						PO	S						PS	Os	
SOs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															1
CO2	002 3 3 2 1 1 1.5 2														
CO3	3	3	2	1	1			1.5	2						1
CO4	3	3	2	1	1			1.5	2						1
CO5	3	3	2	1	1			1.5	2						1
CO/PO &	3	3	2	1	1			1.5	2						1
PSO Average															
		1	– Slig	ht, 2 -	– Mod	era	te,	3 – S	ubsta	ntial					

OBJECTIVES

- To identify varied group discussion skills and apply them to take part in effective discussions in a professional context.
- To analyse concepts and problems and make effective presentations explaining them clearly and precisely.
- To be able to communicate effectively through formal and informal writing.
- To be able to use appropriate language structures to write emails, reports and essays
- To give instructions and recommendations that are clear and relevant to the context

UNIT I

Speaking-Role Play Exercises Based on Workplace Contexts, - talking about competition-discussing progress toward goals-talking about experiences- talking about events in life-discussing past events-Writing: writing emails (formal & semi-formal).

UNIT II

Speaking: discussing news stories-talking about frequency-talking about travel problems-discussing travel procedures- talking about travel problems- making arrangements-describing arrangements-discussing plans and decisions- discussing purposes and reasons-understanding common technology terms-Writing: - writing different types of emails.

UNIT III 12

Speaking: discussing predictions-describing the climate-discussing forecasts and scenarios-talking about purchasing-discussing advantages and disadvantages- making comparisons-discussing likes and dislikes- discussing feelings about experiences-discussing imaginary scenarios Writing: short essays and reports-formal/semi-formal letters.

UNIT IV

Speaking: discussing the natural environment-describing systems-describing position and movement- explaining rules-(example- discussing rental arrangements)- understanding technical instructions-Writing: writing instructions-writing a short article.

UNIT V 12

Speaking: describing things relatively-describing clothing-discussing safety issues (making recommendations) talking about electrical devices-describing controlling actions- Writing: job application(Cover letter + Curriculum vitae)-writing recommendations.

TOTAL: 60 PERIODS

LEARNING OUTCOMES

At the end of the course, learners will be able

- Speak effectively in group discussions held in a formal/semi formal contexts.
- Discuss, analyse and present concepts and problems from various perspectives to arrive at suitable solutions
- Write emails, letters and effective job applications.
- Write critical reports to convey data and information with clarity and precision
- Give appropriate instructions and recommendations for safe execution of tasks

Assessment Pattern

- One online / app based assessment to test speaking and writing skills
- Proficiency certification is given on successful completion of speaking and writing.

CO-PO & PSO MAPPING

CO			Р	O									PS	SO .	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	3	3	3	1	3	3	3	3	3	3	3	-	-	-
2	2	3	3	3	1	3	3	3	3	3	3	3	-	-	-
3	2	2	3	3	1	3	3	3	3	3	3	3	-	-	-
4	3	3	3	3	3	3	3	3	3	3	3	3	-	-	-
5	3	3	3	3	3	3	3	3	3	3	3	3	-	-	-
AVg.	2.4	2.8	3	3	1.8	3	3	3	3	3	3	3	-	-	-

- 1-low, 2-medium, 3-high, '-"- no correlation
- **Note:** The average value of this course to be used for program articulation matrix.

MA3352

PROBABILITY AND LINEAR ALGEBRA

L T P C 3 1 0 4

COURSE OBJECTIVES:

- To introduce the basic notions of vector spaces which will then be used to solve related problems.
- To understand the concepts of vector space, linear transformations and diagonalization.
- To apply the concept of inner product spaces in orthogonalization.
- To provide necessary basics in probability and random processes that are relevant in applications such as random signals, linear systems in communication engineering.
- To understand the basic concepts of probability, one and two dimensional random variables and to introduce some standard distributions applicable to engineering which can describe real life phenomenon.

UNIT I PROBABILITY AND RANDOM VARIABLES

9+3

Axioms of probability – Conditional probability – Baye's theorem - Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential and Normal distributions - Functions of a random variable.

UNIT II TWO- DIMENSIONAL RANDOM VARIABLES

9+3

Joint distributions – Marginal and conditional distributions – Covariance – Correlation and linear regression – Transformation of random variables – Central limit theorem (for independent and identically distributed random variables).

UNIT III VECTOR SPACES

9+3

Vector spaces – Subspaces – Linear combinations and linear system of equations – Linear independence and linear dependence – Bases and dimensions.

UNIT IV LINEAR TRANSFORMATION AND DIAGONALIZATION

9+3

Linear transformation - Null spaces and ranges - Dimension theorem - Matrix representation of a linear transformations - Eigenvalues and eigenvectors – Diagonalization.

UNIT V INNER PRODUCT SPACES

9+3

Inner product, norms - Gram Schmidt orthogonalization process - Adjoint of linear operations - Least square approximation.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

Upon successful completion of the course, students should be able to:

- CO1:Explain the fundamental concepts of advanced algebra and their role in modern mathematics and applied contexts.
- CO2: Demonstrate accurate and efficient use of advanced algebraic techniques.
- CO3: Demonstrate their mastery by solving non-trivial problems related to the concepts and by proving simple theorems about the statements proven by the text.
- CO4: Understand the fundamental concepts of probability with a thorough knowledge of standard distributions that can describe certain real-life phenomenon.
- CO5: Understand the basic concepts of one and two dimensional random variables and apply them to model engineering problems.

TEXT BOOKS

- 1. Johnson. R.A., Miller. I and Freund. J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 9th Edition, 2016.
- 2. Milton. J. S. and Arnold. J.C., "Introduction to Probability and Statistics", Tata McGraw Hill, 4th Edition, 2007.
- 3. Friedberg. A.H., Insel. A.J. and Spence. L., "Linear Algebra", Prentice Hall of India, New Delhi, 4th Edition, 2004.

REFERENCE BOOKS

- 1. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 8th Edition, 2014.
- 2. Ross. S.M., "Introduction to Probability and Statistics for Engineers and Scientists", 5th Edition, Elsevier, 2014.
- 3. Spiegel. M.R., Schiller. J. and Srinivasan . R.A., "Schaum's Outline of Theory and Problems of Probability and Statistics", Tata McGraw Hill Edition, 4th Edition, 2012.
- 4. Kolman. B. Hill. D.R., "Introductory Linear Algebra", Pearson Education, New Delhi, First Reprint, 2009.
- 5. Kumaresan. S., "Linear Algebra A Geometric Approach", Prentice Hall of India, New Delhi, Reprint, 2010.
- 6. Strang. G., "Linear Algebra and its applications", Thomson (Brooks/Cole), New Delhi, 2005.

	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	0	0	0	0	0	0	2	0	0	2	-	-	-
CO2	3	3	0	0	0	0	0	0	2	0	0	2	-	-	-
CO3	3	3	0	0	0	0	0	0	2	0	0	2	-	-	-
CO4	3	3	0	0	0	0	0	0	2	0	0	2	-	-	-
CO5	3	3	0	0	0	0	0	0	2	0	0	2	-	-	-
CO6	3	3	0	0	0	0	0	0	2	0	0	2	-	-	-

COURSE OBJECTIVES:

- 1. To introduce the students about properties of the fluids, behaviour of fluids under static conditions.
- 2. To impart basic knowledge of the dynamics of fluids and boundary layer concept.
- 3. To expose to the applications of the conservation laws to a) flow measurements b) flow through pipes (both laminar and turbulent) and c) forces on pipe bends.
- 4. To exposure to the significance of boundary layer theory and its thicknesses.
- 5. To expose the students to basic principles of working of hydraulic machineries and to design Pelton wheel, Francis and Kaplan turbine, centrifugal and reciprocating pumps.

UNIT I FLUID PROPERTIES AND FLOW CHARACTERISTICS

10+3

Properties of fluids – Fluid statics - Pressure Measurements - Buoyancy and floatation - Flow characteristics - Eulerian and Lagrangian approach - Concept of control volume and system - Reynold's transportation theorem - Continuity equation, energy equation and momentum equation - Applications.

UNIT II FLOW THROUGH PIPES AND BOUNDARY LAYER

9+3

Reynold's Experiment - Laminar flow through circular conduits - Darcy Weisbach equation - friction factor - Moody diagram - Major and minor losses - Hydraulic and energy gradient lines - Pipes in series and parallel - Boundary layer concepts - Types of boundary layer thickness.

UNIT III DIMENSIONAL ANALYSIS AND MODEL STUDIES

8+3

Fundamental dimensions - Dimensional homogeneity - Rayleigh's method and Buckingham Pi theorem - Dimensionless parameters - Similitude and model studies - Distorted and undistorted models.

UNIT IV TURBINES

9+3

Impact of jets - Velocity triangles - Theory of rotodynamic machines - Classification of turbines - Working principles - Pelton wheel - Modern Francis turbine - Kaplan turbine - Work done - Efficiencies - Draft tube - Specific speed - Performance curves for turbines - Governing of turbines.

UNIT V PUMPS 9+3

Classification of pumps - Centrifugal pumps - Working principle - Heads and efficiencies— Velocity triangles - Work done by the impeller - Performance curves - Reciprocating pump working principle - Indicator diagram and it's variations - Work saved by fitting air vessels - Rotary pumps.

TOTAL: 60 PERIODS

OUTCOMES:

On completion of the course, the student is expected to be able to

- 1. Understand the properties and behaviour in static conditions. Also, to understand the conservation laws applicable to fluids and its application through fluid kinematics and dynamics
- 2. Estimate losses in pipelines for both laminar and turbulent conditions and analysis of pipes connected in series and parallel. Also, to understand the concept of boundary layer and its thickness on the flat solid surface.
- 3. Formulate the relationship among the parameters involved in the given fluid phenomenon and to predict the performances of prototype by model studies
- 4. Explain the working principles of various turbines and design the various types of turbines.
- 5. Explain the working principles of centrifugal, reciprocating and rotary pumps and design the centrifugal and reciprocating pumps

TEXT BOOKS:

- Modi P.N. and Seth, S.M. Hydraulics and Fluid Mechanics, Standard Book House, New Delhi, 22nd edition (2019)
- 2. Jain A. K. Fluid Mechanics including Hydraulic Machines, Khanna Publishers, New Delhi, 2014.
- 3. Kumar K. L., Engineering Fluid Mechanics, Eurasia Publishing House(p) Ltd. New Delhi, 2016.

REFERENCES:

- 1. Fox W.R. and McDonald A.T., Introduction to Fluid Mechanics John-Wiley and Sons, Singapore, 2011.
- 2. Pani B S, Fluid Mechanics: A Concise Introduction, Prentice Hall of India Private Ltd, 2016.
- 3. Cengel Y A and Cimbala J M, Fluid Mechanics, McGraw Hill Education Pvt. Ltd., 2014.
- 4. S K Som; Gautam Biswas and S Chakraborty, Introduction to Fluid Mechanics and Fluid Machines, Tata McGraw Hill Education Pvt. Ltd., 2012.
- 5. Streeter, V. L. and Wylie E. B., Fluid Mechanics, McGraw Hill Publishing Co., 2010.

	РО												PSC)	
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	2	2	1	2	2	1	2	1	1	2	3	2	3
2	3	3	3	2	1	2	2	1	2	1	1	2	3	2	3
3	3	3	3	3	1	2	2	1	2	1	1	2	3	3	3
4	3	3	3	3	1	2	2	1	2	1	1	3	3	2	2
5	3	3	3	3	1	2	2	1	2	1	1	3	3	2	2
					Low	(1);	Medi	um (2)); l	High (3	3)				

CE3491

STRENGTH OF MATERIALS

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To understand the concepts of stress, strain, principal stresses and principal planes.
- To study the concept of shearing force and bending moment due to external loads in determinate beams and their effect on stresses.
- To determine stresses and deformation in circular shafts and helical spring due to torsion.
- To compute slopes and deflections in determinate beams by various methods.
- To study the stresses and deformations induced in thin and thick shells.

UNIT I STRESS. STRAIN AND DEFORMATION OF SOLIDS

9

Rigid bodies and deformable solids – Tension, Compression and Shear Stresses - Deformation of simple and compound bars – Thermal stresses – Elastic constants - Volumertric strains – Stresses on inclined planes – Principal stresses and principal planes – Mohr's circle of stress.

UNIT II TRANSVERSE LOADING ON BEAMS AND STRESSES IN BEAM

Beams – Types - Transverse loading on beams – Shear force and Bending moment in beams – Cantilever, Simply supported and over hanging beams. Theory of simple bending – Bending stress distribution – Load carrying capacity – Proportioning of sections – Flitched beams – Shear stress distribution.

UNIT III TORSION 9

Theory of Torsion – Stresses and Deformations in Solid and Hollow Circular Shafts – Combined bending moment and torsion of shafts - Power transmitted to shaft – Shaft in series and parallel – Closed and Open Coiled helical springs – springs in series and parallel.

UNIT IV DEFLECTION OF BEAMS

9

9

Elastic curve – Governing differential equation - Double integration method - Macaulay's method - Area moment method - Conjugate beam method for computation of slope and deflection of determinant beams.

UNIT V THIN CYLINDERS, SPHERES AND THICK CYLINDERS

9

Stresses in thin cylindrical shell due to internal pressure - circumferential and longitudinal stresses - Deformation in thin cylinders - Spherical shells subjected to internal pressure - Deformation in spherical shells - Thick cylinders - Lame's theory.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students would be able to

- 1. Understand the concepts of stress and strain in simple and compound bars, the importance of principal stresses and principal planes.
- 2. Understand the load transferring mechanism in beams and stress distribution due to shearing force and bending moment.
- 3. Apply basic equation of torsion in designing of shafts and helical springs
- 4. Calculate slope and deflection in beams using different methods.
- 5. Analyze thin and thick shells for applied pressures.

TEXT BOOKS:

- 1. Rajput R.K. "Strength of Materials (Mechanics of Solids)", S.Chand & company Ltd., New Delhi, 7th edition, 2018.
- 2. Rattan S.S., "Strength of Materials", Tata McGraw Hill Education Pvt .Ltd., New Delhi, 2017.

REFERENCES:

- 1. Singh. D.K., "Strength of Materials", Ane Books Pvt Ltd., New Delhi, 2021.
- 2. Egor P Popov, "Engineering Mechanics of Solids", 2nd edition, PHI Learning Pvt. Ltd., New Delhi. 2015.
- 3. Beer. F.P. & Johnston. E.R. "Mechanics of Materials", Tata McGraw Hill, 8th Edition, New Delhi 2019.
- 4. Vazirani. V.N, Ratwani. M.M, Duggal .S.K "Analysis of Structures: Analysis, Design and Detailing of Structures-Vol.1", Khanna Publishers, New Delhi 2014.

						P	0							PSO	
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	3	2	3	1	3	2	3	1	3	3	2	3
2	3	3	3	3	2	3	1	3	2	3	1	3	3	2	3
3	3	3	3	3	2	3	1	3	2	3	1	3	3	2	3
4	3	3	3	3	2	3	1	3	2	3	1	3	3	2	3
5	3	3	3	3	2	3	1	3	2	3	1	3	3	2	3
						Low (1); N	1edium	(2);	Higl	า (3)				

IE3351

WORK SYSTEM DESIGN

L T P C 3 0 0 3

COURSE OBJECTIVES:

- Explain the concepts of workstudy productivity and productivity measurement approaches.
- Plan and record and analyse selected tasks using different flow charts.
- Use method study to improve a task. Apply principles of motion economy to improve performance.
- Plan and conduct a time study to improve the efficiency of the system.
- Appraise the standard times to assess the office work condition.

UNIT I PRODUCTIVITY

9

Work Study and Productivity - Total time for a job or operation, total work content and in effective time, - Production and Productivity-Productivity and standard of living, Factors affecting Productivity, Productivity measurement Models. - procedure of work study

UNIT II METHODS ENGINEERING

۵

Methods Engineering-Steps – Recording Tools and techniques - Design of work place layout-Motionstudy-micromotion study - therbligs – cyclegraph and chronocycle graph – simochart – Principles of motion economy.

UNIT III WORK MEASUREMENT

9

Purpose of work measurement –Techniques of work measurement- Time study- Equipment - selecting and timing the job - performance rating –allowances – Standard time – setting timestandardforworkwith machines-learning effect

UNIT IV APPLIED WORK MEASUREMENT

9

Work sampling and Structured estimating – Group sampling Technique –predetermined time standards (PTS), types - use of time standard - Methods Time Measurement (MTM)-MOSTtechnique-Wageincentive plans.

UNIT V WORK DESIGN FOR OFFICE WORK

9

Method Study in office- Organization and methods(O&M) - Work measurement of office work-WorkAnalysistechniques applied tosupportstaff-Formdesign and control.

TOTAL:45 PERIODS

COURSE OUTCOMES:

- **CO1**: Ability to understand the concepts of work study productivity and productivity measurement approaches.
- **CO2**: Ability to Record and analyze selected tasks using different flow charts.
- **CO3**: Ability to apply method study to improve a task. Apply principles of motion economy to improve performance.
- **CO4**: Ability to conduct a time study to improve the efficiency of the system.
- CO5: Ability to Estimate the standard times to assess the office work condition.

TEXT BOOKS:

- 1. Barnes, R.M, "Motion and Time Study, Design and measurement of work", John Wiley sons(Asia), Seventh edition, 2003.
- 2. ILO, "Introduction to Work Study", Oxford and IBH publishing, 2008.

CO's-PO's & PSO's MAPPING

CO's			PO	's									PS	O's	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3														
2		2	3										2		
3		2	3											2	
4				3										1	
5				2										1	
AVg.	1.5	2	3	2.5									2	1.33	

ME3393

MANUFACTURING PROCESSES

L T P C

COURSE OBJECTIVES:

- 1. To illustrate the working principles of various metal casting processes.
- 2. To learn and apply the working principles of various metal joining processes.
- 3. To analyse the working principles of bulk deformation of metals.
- 4. To learn the working principles of sheet metal forming process.
- 5. To study and practice the working principles of plastics molding.

UNIT – I METAL CASTING PROCESSES

9

Sand Casting – Sand Mould – Type of patterns - Pattern Materials – Pattern allowances – Molding sand Properties and testing – Cores –Types and applications – Molding machines – Types and applications – Melting furnaces – Principle of special casting processes- Shell, investment – Ceramic mould – Pressure die casting – low pressure, gravity- Tilt pouring, high pressure die casting- Centrifugal Casting – CO2 casting – Defects in Sand casting process-remedies

UNIT II METAL JOINING PROCESSES

(

Fusion welding processes – Oxy fuel welding – Filler and Flux materials—Arc welding, Electrodes, Coating and specifications – Gas Tungsten arc welding –Gas metal arc welding - Submerged arc welding – Electro slag welding – Plasma arc welding — Resistance welding Processes -Electron beam welding –Laser beam Welding Friction welding – Friction stir welding – Diffusion welding – Thermit Welding ,Weld defects – inspection &remedies – Brazing - soldering – Adhesive bonding.

UNIT III BULK DEFORMATION PROCESSES

q

Hot working and cold working of metals – Forging processes – Open, impression and closed die forging – cold forging- Characteristics of the processes – Typical forging operations – rolling of metals – Types of Rolling – Flat strip rolling – shape rolling operations – Defects in rolled parts – Principle of rod and wire drawing – Tube drawing – Principles of Extrusion – Types – Hot and Cold extrusion. Introduction to shaping operations.

UNIT IV SHEET METAL PROCESSES

9

Sheet metal characteristics – Typical shearing, bending and drawing operations – Stretch forming operations – Formability of sheet metal – Test methods –special forming processes - Working principle and applications – Hydro forming – Rubber pad forming – Metal spinning – Introduction of Explosive forming, magnetic pulse forming, peen forming, Super plastic forming – Micro forming – Incremental forming.

UNIT V MANUFACTURE OF PLASTIC COMPONENTS

9

Types and characteristics of plastics – Molding of thermoplastics & Thermosetting polymers– working principles and typical applications – injection molding – Plunger and screw machines – Compression molding, Transfer Molding – Typical industrial applications – introduction to blow molding – Rotational molding – Film blowing – Extrusion – Thermoforming – Bonding of Thermoplastics- duff moulding.

TOTAL: 45 PERIODS

OUTCOMES: At the end of the course the students would be able to

- Explain the principle of different metal casting processes.
- 2. Describe the various metal joining processes.
- 3. Illustrate the different bulk deformation processes.
- 4. Apply the various sheet metal forming process.
- 5. Apply suitable molding technique for manufacturing of plastics components.

TEXT BOOKS:

- 1. Kalpakjian. S, "Manufacturing Engineering and Technology", Pearson Education India,4th Edition, 2013
- P.N.Rao Manufacturing Technology Volume 1 Mc Grawhill Education 5th edition, 2018.

REFERENCES:

- 1. Roy. A. Lindberg, Processes and materials of manufacture, PHI / Pearson education, 2006.
- 2. S. Gowri P. Hariharan, A.Suresh Babu, Manufacturing Technology I, Pearson Education, 2008.
- 3. Paul Degarma E, Black J.T and Ronald A. Kosher, Eligth Edition, Materials and Processes, in Manufacturing, Eight Edition, Prentice Hall of India, 1997.
- 4. Hajra Chouldhary S.K and Hajra Choudhury. AK., Elements of workshop Technology, volume I and II, Media promoters and Publishers Private Limited, Mumbai, 1997
- 5. Sharma, P.C., A Text book of production Technology, S.Chand and Co. Ltd., 2004

						Р	0								PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3		2			2	3	1	1	-	•	1	3	1	2
2	3		2			2	3	1	1	-	1	1	3	1	2
3	3		2			2	2	1	1	-	-	1	3	1	2
4	3		2			2	2	1	1	-	-	1	3	1	2
5	3		2		2	2	2	1	1	-	1	1	3	1	2
					Lo	ow (1)	; M	ledium	(2);	Hi	gh (3)				

ME3351

ENGINEERING MECHANICS

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To Learn the use scalar and vector analytical techniques for analyzing forces in statically determinate structures
- 2 To introduce the equilibrium of rigid bodies, vector methods and free body diagram
- 3 To study and understand the distributed forces, surface, loading on beam and intensity.
- To learn the principles of friction, forces and to determine the apply the concepts of frictional forces at the contact surfaces of various engineering systems.
- 5 To develop basic dynamics concepts force, momentum, work and energy.

UNIT I STATICS OF PARTICLES

g

Fundamental Concepts and Principles, Systems of Units, Method of Problem Solutions, Statics of Particles - Forces in a Plane, Resultant of Forces, Resolution of a Force into Components, Rectangular Components of a Force, Unit Vectors. Equilibrium of a Particle- Newton's First Law of Motion, Space and Free-Body Diagrams, Forces in Space, Equilibrium of a Particle in Space.

UNIT II EQUILIBRIUM OF RIGID BODIES

9

Principle of Transmissibility, Equivalent Forces, Vector Product of Two Vectors, Moment of a Force about a Point, Varignon's Theorem, Rectangular Components of the Moment of a Force, Scalar Product of Two Vectors, Mixed Triple Product of Three Vectors, Moment of a Force about an Axis, Couple - Moment of a Couple, Equivalent Couples, Addition of Couples, Resolution of a Given Force into a Force -Couple system, Further Reduction of a System of Forces, Equilibrium in Two and Three Dimensions - Reactions at Supports and Connections.

UNIT III DISTRIBUTED FORCES

9

Centroids of lines and areas – symmetrical and unsymmetrical shapes, Determination of Centroids by Integration , Theorems of Pappus-Guldinus, Distributed Loads on Beams, Centre of Gravity of a Three-Dimensional Body, Centroid of a Volume, Composite Bodies , Determination of Centroids of Volumes by Integration. Moments of Inertia of Areas and Mass - Determination of the Moment of Inertia of an Area by Integration, Polar Moment of Inertia , Radius of Gyration of an Area , Parallel-Axis Theorem , Moments of Inertia of Composite Areas, Moments of Inertia of a Mass - Moments of Inertia of Thin Plates , Determination of the Moment of Inertia of a Three-Dimensional Body by Integration.

UNIT IV FRICTION

9

The Laws of Dry Friction, Coefficients of Friction, Angles of Friction, Wedge friction, Wheel Friction, Rolling Resistance, Ladder friction.

UNIT V DYNAMICS OF PARTICLES

ί

Kinematics - Rectilinear Motion and Curvilinear Motion of Particles. Kinetics- Newton's Second Law of Motion - Equations of Motions, Dynamic Equilibrium, Energy and Momentum Methods - Work of a Force, Kinetic Energy of a Particle, Principle of Work and Energy, Principle of Impulse and Momentum, Impact of bodies.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students would be able to

- 1. Illustrate the vector and scalar representation of forces and moments
- 2. Analyse the rigid body in equilibrium
- 3. Evaluate the properties of distributed forces
- 4. Determine the friction and the effects by the laws of friction
- 5. Calculate dynamic forces exerted in rigid body

TEXT BOOKS:

- 1. Beer Ferdinand P, Russel Johnston Jr., David F Mazurek, Philip J Cornwell, Sanjeev Sanghi, Vector Mechanics for Engineers: Statics and Dynamics, McGraw Higher Education., 12thEdition, 2019.
- 2. Vela Murali, "Engineering Mechanics-Statics and Dynamics", Oxford University Press, 2018.

REFERENCES:

- 1. Boresi P and Schmidt J, Engineering Mechanics: Statics and Dynamics, 1/e, Cengage learning, 2008.
- 2. Hibbeller, R.C., Engineering Mechanics: Statics, and Engineering Mechanics: Dynamics, 13th edition, Prentice Hall, 2013.
- 3. Irving H. Shames, Krishna Mohana Rao G, Engineering Mechanics Statics and Dynamics, 4thEdition, Pearson Education Asia Pvt. Ltd., 2005.
- 4. Meriam J L and Kraige L G, Engineering Mechanics: Statics and Engineering Mechanics: Dynamics, 7th edition, Wiley student edition, 2013.
- 5. Timoshenko S, Young D H, Rao J V and SukumarPati, Engineering Mechanics, 5thEdition, McGraw Hill Higher Education, 2013.

						P	0							PSO	
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	2	1	2							2	3	1	1
2	3	2	2	1	2							2	3	1	1
3	3	2	3	1	2							2	3	1	2
4	3	2	3	1	2							2	3	1	2
5	3	2	3	1	2							2	3	1	2
			•		Low (1);	Mediu	m (2)	Н	ligh (3))				

CE3481 STRENGTH OF MATERIALS AND FLUID MACHINERY LABORATORY L T P C 0 0 4 2

COURSE OBJECTIVE:

- 1. To study the mechanical properties of metals, wood and spring by testing in laboratory.
- 2. To verify the principles studied in fluid mechanics and machinery theory by performing experiments in laboratory.

UNIT - I STRENGTH OF MATERIALS

30

30

LIST OF EXPERIMENTS

- Tension test on mild steel rod
- 2. Torsion test on mild steel rod
- 3. Hardness test on metal (Rockwell and Brinell Hardness)
- 4. Compression test on helical spring
- 5. Deflection test on carriage spring

UNIT – II FLUID MECHANICS AND MACHINES LABORATORY LIST OF EXPERIMENTS

- 1. (a) Determination of coefficient of discharge of a venturimeter
 - (b) Determination of friction factor for flow through pipes
- 2. (a) Determination of metacentric height
 - (b) Determination of forces due to impact of jet on a fixed plate

- 3. Characteristics of centrifugal pumps
- 4. Characteristics of reciprocating pump
- 5. Characteristics of Pelton wheel turbine

TOTAL: 60 PERIODS

OUTCOMES: On completion of the course, the student is expected to be able to

- 1. Determine the tensile, torsion and hardness properties of metals by testing
- 2. Determine the stiffness properties of helical and carriage spring
- 3. Apply the conservation laws to determine the coefficient of discharge of a venturimeter and finding the friction factor of given pipe
- 4. Apply the fluid static and momentum principles to determine the metacentric height and forces due to impact of jet
- 5. Determine the performance characteristics of turbine, rotodynamic pump and positive displacement pump.

СО						Р	0							PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	3	3	1	1	1	3	1	1	2	2	2	1
2	3	2	1	3	3	1	1	1	3	1	1	2	3	2	1
3	3	3	2	3	2	1	1	1	3	1	1	2	3	2	1
					Lo	ow (1)	; M	ledium	n (2);	Hi	gh (3)				

ME3382

MANUFACTURING TECHNOLOGY LABORATORY

L T P C 0 0 4 2

COURSE OBJECTIVES:

- 1 To Selecting appropriate tools, equipment's and machines to complete a given job.
- 2 To Performing various welding process using GMAW and fabricating gears using gear making machines.
- 3 To Performing various machining process such as rolling, drawing, turning, shaping, drilling, milling and analyzing the defects in the cast and machined components.

LIST OF EXPERIMENTS

Fabricating simple structural shapes using Gas Metal Arc Welding machine.

- 2. Preparing green sand moulds with cast patterns.
- 3. Taper Turning and Eccentric Turning on circular parts using lathe machine.
- 4. Knurling, external and internal thread cutting on circular parts using lathe machine.
- 5. Shaping Square and Hexagonal Heads on circular parts using shaper machine.
- 6. Drilling and Reaming using vertical drilling machine.
- 7. Milling contours on plates using vertical milling machine.

- 8. Cutting spur and helical gear using milling machine.
- 9. Generating gears using gear hobbing machine.
- 10. Generating gears using gear shaping machine.
- 11. Grinding components using cylindrical and centerless grinding machine.
- 12. Grinding components using surface grinding machine.
- 13. Cutting force calculation using dynamometer in milling machine
- 14. Cutting force calculation using dynamometer in lathe machine.

TOTAL:60 PERIODS

OUTCOMES:

At the end of the course the students would be able to

- 1. Demonstrate the safety precautions exercised in the mechanical workshop and join two metals using GMAW.
- 2. The students able to make the work piece as per given shape and size using machining process such as rolling, drawing, turning, shaping, drilling and milling.
- 3. The students become make the gears using gear making machines and analyze the defects in the cast and machined components

СО						Р	0							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3						1		2			1	1	2	2
2	3						1		2			1	1	2	2
3	3						1		2			1	1	2	2
					Lo	w (1)	; M	ediun	n (2) ;	Hi	gh (3))			l .

GE3361

PROFESSIONAL DEVELOPMENT

LTPC 0 0 2 1

OBJECTIVES:

To be proficient in important Microsoft Office tools: MS WORD, EXCEL, POWERPOINT.

- To be proficient in using MS WORD to create quality technical documents, by using standard templates, widely acceptable styles and formats, variety of features to enhance the presentability and overall utility value of content.
- To be proficient in using MS EXCEL for all data manipulation tasks including the common statistical, logical, mathematical etc., operations, conversion, analytics, search and explore, visualize, interlink, and utilizing many more critical features offered
- To be able to create and share quality presentations by using the features of MS PowerPoint, including: organization of content, presentability, aesthetics, using media elements and enhance the overall quality of presentations.

MS WORD: 10 Hours

Create and format a document

Working with tables

Working with Bullets and Lists

Working with styles, shapes, smart art, charts

Inserting objects, charts and importing objects from other office tools

Creating and Using document templates

Inserting equations, symbols and special characters
Working with Table of contents and References, citations
Insert and review comments
Create bookmarks, hyperlinks, endnotes footnote
Viewing document in different modes
Working with document protection and security

MS EXCEL: 10 Hours

Create worksheets, insert and format data

Work with different types of data: text, currency, date, numeric etc.

Split, validate, consolidate, Convert data

Inspect document for accessibility

Sort and filter data

Perform calculations and use functions: (Statistical, Logical, Mathematical, date, Time etc.,)

Work with Lookup and reference formulae

Create and Work with different types of charts

Use pivot tables to summarize and analyse data

Perform data analysis using own formulae and functions

Combine data from multiple worksheets using own formulae and built-in functions to generate results

Export data and sheets to other file formats

Working with macros

Protecting data and Securing the workbook

MS POWERPOINT: 10 Hours

Select slide templates, layout and themes

Formatting slide content and using bullets and numbering

Insert and format images, smart art, tables, charts

Using Slide master, notes and handout master

Working with animation and transitions

Organize and Group slides

Import or create and use media objects: audio, video, animation

Perform slideshow recording and Record narration and create presentable videos

TOTAL: 30 PERIODS

OUTCOMES:

On successful completion the students will be able to

- Use MS Word to create quality documents, by structuring and organizing content for their day to day technical and academic requirements
- Use MS EXCEL to perform data operations and analytics, record, retrieve data as per requirements and visualize data for ease of understanding
- Use MS PowerPoint to create high quality academic presentations by including common tables, charts, graphs, interlinking other elements, and using media objects.

IE3491

OPERATIONS RESEARCH

L T P C 3 0 0 3

COURSE OBJECTIVES:

- Provide knowledge of optimization techniques and approaches.
- Formulate a real-world problem as a mathematical programming model.
- Enable the students apply mathematical, computational and communication skills neededfor the practical utility of Operations Research.

- Knowledge to solve networking problems.
- Knowledge to solve various inventory problems.
- Gain knowledge on solving different waiting line models.

UNIT I LINEAR PROGRAMMING

9

Introduction to Operations Research – assumptions of linear programming problems - Formulations of linear programming problem – Graphical method. Solutions to LPP using simplex algorithm – Two phase method – Big M method

UNIT II ADVANCES IN LINEAR PROGRAMMING

9

Revised simplex method - primal dual relationships - Dual simplex algorithm - Sensitivity analysis- changes in RHS value - changes in Coefficient of constraint - Adding new variable.

UNIT III NETWORK ANALYSIS

9

Transportation problems: Northwest corner rule, least cost method, Vogel's approximation method- stepping stone method - MODI method - Unbalanced transportation - Assignment problem - Hungarian algorithm - Project Management CPM & PERT. Minimum spanning tree problem: Prim's algorithm, Kruskal's algorithm - Shortest path problem: Dijkstra's algorithms, Floyds algorithm - maximal flow problem: Maximal-flow minimum cut theorem - Maximal flow algorithm

UNIT IV INVENTORY MODELS

9

Purchase model with no shortages – Manufacturing model with no shortages - Model with price breaks - Reorder point model - Probabilistic inventory model

UNIT V QUEUING THEORY

9

Queuing theory terminology – Single server, multi server- limited and unlimited queue capacity- limited and unlimited population –limited and infinite queue length.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

- CO1:Learned to translate a real-world problem, given in words, into a mathematical Formulation.
- CO2: An understanding of the role of algorithmic thinking in the solution of operations researchproblems.
- CO3: Be able to build and solve Transportation Models and Assignment Models, maximal flowproblem, minimum spanning tree and shortest path problem.
- CO4: Able to handle issues in various Inventory models.
- CO5: The students acquire capability in applying and using of queuing models for day today problem

CO's			PO	's									PS	O's	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3		3	2									2	
2	3	2		3	2								3		3
3	2	3	3	3	3									2	
4	3	3	3	3	3								2		

5	3	3	3	2	3					1	2
AVg.	2.4	2.4	3	2.4	2.6				2.5	1.6	2.5

TEXT BOOKS:

- 1. Panneerselvam R, "Operations Research", PHI, 2009.
- 2. Srinivasan G., "Operations Research Principles and Applications", PHI, 2017.

REFERENCES:

- 1. Hamdy A Taha, "Operations Research An Introduction", Pearson, 2017.
- 2. Philips, Ravindran and Solberg, "Operations Research principle and practise", John Wiley, 2007.
- 3. Ronald L Rardin, "Optimisation in Operations Research", Pearson, 2018.

IE3451

THERMODYNAMICS

L T P C 3 1 0 4

COURSE OBJECTIVES:

- To explain the basic concepts of thermodynamics and the first law of thermodynamics.
- To analyze the thermodynamics' second law.
- To assess the qualities of pure materials.
- To obtain a better understanding of mode of heat conduction, convection, and radiation.
- To apply thermodynamic concepts to IC engines, boilers, turbines, refrigeration, and air-conditioning systems.

UNIT I BASICS CONCEPTS AND FIRST LAW OF THERMODYNAMICS 9+3

Basic concepts; Continuum and macroscopic approach; thermodynamic systems (closed and open); thermodynamic properties and equilibrium; state of a system, state postulate for simple compressible substances, paths and processes on state diagrams; concepts of heat and work, different modes of work; zeroth law of thermodynamics; concept of temperature. First Law of Thermodynamics; Concept of energy and various forms of energy; internal energy, enthalpy; specific heats; first law applied to elementary processes, closed systems and control volumes, steady and unsteady flow analysis

UNIT II SECOND LAW OF THERMODYNAMICS

9+3

Second law of thermodynamics; Limitations of the first law of thermodynamics, concepts of heat engines and heat pumps/refrigerators, Kelvin-Planck and Clausius statements and their equivalence; reversible and irreversible processes; Carnot cycle and Carnot theorems; thermodynamic temperature scale; Clausius inequality and concept of entropy; the principle of increase of entropy, T-s diagrams; second law analysis of control volume; availability and irreversibility; third law of thermodynamics.

UNIT III PROPERTIES OF PURE SUBSTANCE

9 + 3

Thermodynamic properties of pure substances in solid, liquid and vapour phases; P-v-T behaviour of simple compressible substances, thermodynamic property tables and charts, psychrometric charts ideal and real gases: Vander waals equations - Reduced property - Compressibility chart - Properties of mixture of gases - Dalton's law and Gibbs - Internal energy, Enthalpy and specific heats of gas mixtures.

JNIT IV BASICS OF HEAT TRANSFER

9+3

Modes of Heat Transfer-Concept of heat resistance and electrical analogy -Conduction: One dimensional heat conduction in plane wall, composite walls and cylinder system, fins - Simple Problems - Convection - Free and forced -Flow over flat plates and tubes - Heat exchangers- Radiation -radiation laws, black, grey body radiation - radiation Shield.

UNIT V APPLICATIONS OF THERMODYNAMIC CYCLES

9 + 3

Internal Combustion Engines: Air-standard Otto, Diesel and dual cycles, air compressors, C.I and SI Engines - Four Stroke and two stroke Engines-Gas turbines, boilers: Fire tube boiler & Water Tube Boilers, Steam turbines; Impulse turbine and reaction turbine - Refrigeration Cycle - Vapour Compression & vapour absorption system, gas refrigeration system - Environmental friendly refrigerants -Air-Conditioning.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

At the end of this course the students shall be able to:

- CO1. Apply first law of thermodynamics to engineering applications.
- CO2. Differentiate first and second law of thermodynamics.
- CO3. Examine the properties of real and ideal gas mixtures using thermodynamic charts.
- CO4. Evaluate the heat transfer through conduction, convection and radiation
- CO5. Analyze the thermodynamic operations on IC engine, boilers, turbine, refrigerator etc.

PO **PSO** CO 2.6 2.4 2.4 2.6 Avg

CO's-PO's & PSO's MAPPING

TEXT BOOKS:

- 1. Cengel Y.A. and Boles M.A., "Thermodynamics an Engineering Approach", 8th edition, McGraw hill, United States, 2017.
- 2. Nag P.K., "Engineering Thermodynamics", 6th edition, McGraw Hill, United States, 2017.
- 3. Holman J.P., "Heat transfer", 10th edition, McGraw Hill, United States 2017.

REFERENCES:

- 1. R.K.Rajput, "Engineering Thermodynamics", 3rd Edition, Laksmi Publications, New Delhi.
- 2. Arora C.P., "Refrigeration and Air Conditioning", 3rd Edition, Tata McGraw Hill, United States, 2017.
- 3. Claus Borgnakke, "Fundamentals of Engineering Thermodynamics" 8th edition, John Wiley & Sons, United States, 2013.
- 4. Moran M.J. and Shapiro H.N., "Fundamentals of Engineering Thermodynamics", 9th Edition, Wiley, United States, 2018.
- 5. Rathakrishnan E., "Fundamentals of Engineering Thermodynamics", 2nd Edition, Prentice Hall of India, 2005.
- 6. Van Wylen and Sonntag, "Classical Thermodynamics", 4th Edition, Wiley, United States, 1994.

IE3452

APPLIED ERGONOMICS

LTPC 4 0 0 4

COURSE OBJECTIVES:

- Explain the knowledge of basic human science and Engineering science.
- Teach skills associated with ergonomic measurement methods and analytical

- techniquesto workplace ergonomic problems.
- Plan and conduct an ergonomic analysis and ergonomic recommendations for modernwork environment problems.
- Use the occupational health and safety rules to improve the work place.
- Teach and apply ergonomic principles to design workplaces for the improvement of humanperformance.

UNIT I INTRODUCTION

12

Brief history of human factors Engineering/Ergonomics – Interdisciplinary nature- Human—machine systems - Ergonomics and its areas of application in the work system - Future directions for ergonomics- Biostatic and Biodynamic Mechanics

UNIT II WORK PLACE DESIGN

12

Problems of body size- Anthropometry measures- Work posture- Design for standing and seated workers - Design of repetitive tasks - Design of manual handling tasks- VDT work stations - Handtool design

UNIT III PHYSIOLOGICAL ASPECTS OF HUMAN AT WORK

12

Stress and fatigue -Physical work capacity - Physiological factors affecting work capacity - Fitness for work -Working hours and shift work- Quantitative work load analysis - Psychological work Demands.

UNIT IV DESIGN OF ENVIRONMENT

12

Design and Assessment in Hot, cold workplaces and the design of the physical environment–Noise and vibration-Vision –Human errors and Accidents – OSHA: Ergonomics Safety and Health Management rules – Personal Protective Equipments.

UNIT V HUMAN PERFORMANCE

12

Human Information receiving and processing – Information theory and its application – Cognitive systems - Mental Work Load -Signal detection theory -- Design of Displays and controls

TOTAL: 60 PERIODS

COURSE OUTCOMES:

CO1: Ability to apply Knowledge of basic human science and Engineering science.

CO2: Ability to Apply skills associated with ergonomic measurement methods and analytical techniques to workplace ergonomic problems.

CO3: Ability to conduct an ergonomic analysis and ergonomic recommendations for modern work environment problems.

CO4: Ability to implement the occupational health and safety rules to improve the work place.

CO5: Ability to apply ergonomic principles to design workplaces for the improvement of human performance.

TEXT BOOKS:

- 1. Bridger, R. S." Introduction to Ergonomics", 3rd ed. CRC Press, New York and London,2008
- 2. Martin Helander, "A guide to Ergonomics of Manufacturing", TMH, 2006.

REFERENCES:

- 1. Philips, Chandler A, "Human Factors Engineering", John Wiley and Sons, Inc. 2000
- 2. Sanders, M.M. & McCormick, E.J. "Human Factors in Engineering & Design "7th ed., McGraw-Hill, NY,1993

CO's			PO'	S									PS	O's	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1												1		
2		2	3											2	
3			3	3										1	2
4				2	3									1	
5				3											
AVg.	1	2	3	2.6	3								1	1.3	2

IE3453

ENGINEERING QUALITY CONTROL

LTPC 3 0 0 3

COURSE OBJECTIVES:

- Developing a clear knowledge in the basics of various quality concepts.
- Facilitating the students in understanding the application of control charts and its techniques.
- Developing the special control procedures for service and process oriented industries.
- Analyzing and understanding the process capability study.
- Developing the acceptance sampling procedures for incoming raw material.

UNIT I QUALITY FUNDAMENTALS

Importance of quality- evolution of quality- definitions of quality- dimensions of quality- quality controlquality assurance- areas of quality- quality planning- quality objectives and policies- quality costseconomicsof quality- quality loss function- quality Vs productivity- Quality Vs reliability.

UNIT II CONTROL CHARTS FOR VARIABLES

Process variation- preliminary decisions- control limits and their computation- construction and application of X bar, R and S charts- warning and modified control limits- process adjustment fortrend - Comparison of process variation with specification limits- O.C. curve for X bar chart.

UNIT III STATISTICAL PROCESS CONTROL

Process stability- process capability study using control charts- capability evaluation- Cp, CpkandCpm - capability analysis using histogram and normal probability plot- machine capability study gauge capability study- setting statistical tolerances for components and assemblies- individualmeasurement charts- X-chart, moving average and moving range chart, multi-vari chart.

UNIT IV CONTROL CHARTS FOR ATTRIBUTES

9

Limitations of variable control charts- Control charts for fraction non-conforming-p and np charts. variable sample size, operating characteristic function, run length- Control chart for nonconformities(defects)- c, u, ku charts, demerits control chart- applications.

ACCEPTANCE SAMPLING

9

Need- economics of sampling- sampling procedure- single and double sampling- O.C. Curves-Average outgoing quality- Average sample number- Average total inspection- Multiple and sequentialsampling- Standard sampling plans- Military, Dodge-Roming, IS 2500.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Students will be able to:

CO1: Control the quality of processes using control charts for variables in manufacturing industries.

- CO2: Control the occurrence of defective product and the defects in manufacturing companies.
- CO3: Control the occurrence of defects in services.
- CO4: Analyzing and understanding the process capability study.
- CO5: Developing the acceptance sampling procedures for incoming raw material.

CO's-PO's & PSO's MAPPING

CO's			PO's	;									PS	O's	
CUS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	1	1	1	1	1	2	2	1	1	2	1		2	
2	2	3	1	2	1	1	2	1	2	2	3	2	2		2
3	2	2	3	3	3	2	2	2	2	2	3	2	2		
4	2	3	3	2	2	2	2	2	1	2	2	2		1	2
5	3	2	3	3	2	2	2	2	1	2	2	2	2	1	2
AVg.	2	2.2	2	2.2	1.8	1.6	2	1.8	1.4	1.8	2.4	1.8	2	1.3	2

TEXT BOOKS:

- 1. Douglus C. Montgomery, "Introduction to Statistical Quality Control", Wiley-India, Seventh Edition, 2013.
- 2. Krishnaiah K.," Applied Statistical Quality Control and Improvement", PHI, 2014.

REFERENCES:

- 1. AmitavaMitra, "Fundamentals of Quality Control and Improvement", Wiley, Fourth Edition, 2015.
- 2. Dale H. Besterfield, Quality Control, Pearson Education Asia, Eigth Edition, 2008.
- 3. Eugene L. Grant and Richard S. Leaven Worth, "Statistical Quality Control", McGraw-Hill Education, Seventh Edition, 2000.

AE3491

MECHANICS OF MACHINES

L T P C 3 0 0 3

COURSE OBJECTIVES:

- 1. To understand the principles in the formation of mechanisms and their kinematics.
- 2. To learn the basic concepts of toothed gearing and kinematics of gear trains.
- 3. To study the effect of friction in different machine elements.
- 4. To analyze the forces and torque acting on simple mechanical systems
- 5. To understand the importance of balancing and vibration

UNIT I KINEMATIC ANALYSIS IN SIMPLE MECHANISMS AND CAMS 9 Mechanisms – Terminology and definitions – kinematics inversions and anlaysis of 4 bar and slide crank chain – velocity and acceleration polygons – cams – classifications – displacement diagrams - layout of plate cam profiles.

UNIT II TOOTHED GEARING AND GEAR TRAINS

9

Gear terminology – law of toothed gearing – involute gearing – Gear tooth action - Interference and undercutting – gear trains – parallel axis gear trains – epicyclic gear trains.

UNIT III FRICTION ASPECTS IN MACHINE COMPONENTS

9

Surface contacts – Sliding and Rolling friction – Friction drives – Friction in screw threads – Friction clutches – Belt drives – Friction aspects in brakes.

UNIT IV STATIC AND DYNAMIC FORCE ANALYSIS

9

Applied and Constrained Forces – Free body diagrams – Static equilibrium conditions – Static Force analysis in simple mechanisms – Dynamic Force Analysis in simple machine members – Inertia Forces and Inertia Torque – D'Alembert's principle.

UNIT V BALANCING OF ROTATING MASSES AND VIBRATION

Static and Dynamic balancing – Balancing of revolving masses – Balancing machines – Free vibrations – natural Frequency – Damped Vibration – bending critical speed of simple shaft – Forced vibration – harmonic Forcing – Vibration isolation.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

- CO1:Design the linkages and the cam mechanisms for specified output motions.
- CO2: Determine the gear parameters of toothed gearing and speeds of gear trains in various applications.
- CO3: Evaluate the frictional torque in screw threads, clutches, brakes and belt drives.
- CO4: Determine the forces on members of mechanisms during static and dynamic equilibrium conditions.
- CO5: Determine the balancing masses on rotating machineries and the natural frequencies offree and forced vibratory systems

TEXT BOOK

1. Uicker, J.J., Pennock G.R and Shigley, J.E., "Theory of Machines and Mechanisms", Oxford University Press, 2017.

REFERENCES

- 1. Cleghorn. W. L., Nikolai Dechev, "Mechanisms of Machines", Oxford University Press, 2015.
- 2. Rao.J.S. and Dukkipati.R.V. "Mechanism and Machine Theory", New Age International Pvt.Ltd., 2006.
- 3. Rattan, S.S, "Theory of Machines", McGraw-Hill Education Pvt. Ltd., 2014.
- 4. Robert L. Norton, Kinematics and Dynamics of Machinery, Tata McGraw-Hill, 2009.
- 5. Thomas Bevan, "The Theory of Machines", Pearson Education Ltd., 2010

MAPPING OF COS AND POS:

	PO1	PO2	PO	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
			3												ı
CO1	3	2	3	2.5	2	-	1		-	-	-	3	3	1	1
CO2	3	3	3	3	2	-	1	-	-	-	1	3	3	1	1
CO3	3	2.5	2.5	2.5	2	2	1	-	•	-	1	3	3	1	1
CO4	3	3	3	2.5	2	-	1		-	-	1	3	3	1	1
CO5	3	3	3	3	2	2	1	1	ı	-	1	3	3	1	1
Avg.	3	2.7	2.9	2.7	2	0.8	1	-	-	-	0.8	3	3	1	1

OBJECTIVES:

- To introduce the basic concepts of environment, ecosystems and biodiversity and emphasize on the biodiversity of India and its conservation.
- To impart knowledge on the causes, effects and control or prevention measures of environmental pollution and natural disasters.
- To facilitate the understanding of global and Indian scenario of renewable and nonrenewable resources, causes of their degradation and measures to preserve them.
- To familiarize the concept of sustainable development goals and appreciate the interdependence of economic and social aspects of sustainability, recognize and analyze climate changes, concept of carbon credit and the challenges of environmental management.
- To inculcate and embrace sustainability practices and develop a broader understanding on green materials, energy cycles and analyze the role of sustainable urbanization.

UNIT I ENVIRONMENT AND BIODIVERSITY

6

Definition, scope and importance of environment – need for public awareness. Eco-system and Energy flow– ecological succession. Types of biodiversity: genetic, species and ecosystem diversity– values of biodiversity, India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ.

UNIT II ENVIRONMENTAL POLLUTION

6

Causes, Effects and Preventive measures of Water, Soil, Air and Noise Pollutions. Solid, Hazardous and E-Waste management. Case studies on Occupational Health and Safety Management system (OHASMS). Environmental protection, Environmental protection acts.

UNIT III RENEWABLE SOURCES OF ENERGY

6

Energy management and conservation, New Energy Sources: Need of new sources. Different types new energy sources. Applications of- Hydrogen energy, Ocean energy resources, Tidal energy conversion. Concept, origin and power plants of geothermal energy.

UNIT IV SUSTAINABILITY AND MANAGEMENT

6

Development, GDP, Sustainability- concept, needs and challenges-economic, social and aspects of sustainability-from unsustainability to sustainability-millennium development goals, and protocols-Sustainable Development Goals-targets, indicators and intervention areas Climate change- Global, Regional and local environmental issues and possible solutions-case studies. Concept of Carbon Credit, Carbon Footprint. Environmental management in industry-A case study.

UNIT V SUSTAINABILITY PRACTICES

6

Zero waste and R concept, Circular economy, ISO 14000 Series, Material Life cycle assessment, Environmental Impact Assessment. Sustainable habitat: Green buildings, Green materials, Energy efficiency, Sustainable transports. Sustainable energy: Non-conventional Sources, Energy Cycles-carbon cycle, emission and sequestration, Green Engineering: Sustainable urbanization- Socio-economical and technological change.

TOTAL: 30 PERIODS

OUTCOMES:

- To recognize and understand the functions of environment, ecosystems and biodiversity and their conservation.
- To identify the causes, effects of environmental pollution and natural disasters and contribute to the preventive measures in the society.
- To identify and apply the understanding of renewable and non-renewable resources and contribute to the sustainable measures to preserve them for future generations.
- To recognize the different goals of sustainable development and apply them for suitable technological advancement and societal development.
- To demonstrate the knowledge of sustainability practices and identify green materials, energy cycles and the role of sustainable urbanization.

TEXT BOOKS:

- 1. Anubha Kaushik and C. P. Kaushik's "Perspectives in Environmental Studies", 6th Edition, New Age International Publishers ,2018.
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2016.
- 3. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, 2004.
- 4. Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Prentice Hall.
- 5. Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning.
- 6. Environment Impact Assessment Guidelines, Notification of Government of India, 2006.
- 7. Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998.

REFERENCES:

- 1. R.K. Trivedi, 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards', Vol. I and II, Enviro Media. 38. Edition 2010.
- 2. Cunningham, W.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publ., House, Mumbai, 2001.
- 3. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India PVT. LTD, New Delhi, 2007.
- 4. Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press, Third Edition, 2015.
- 5. Erach Bharucha "Textbook of Environmental Studies for Undergraduate Courses" Orient Blackswan Pvt. Ltd. 2013.

CO-PO & PSO MAPPING

СО			Р	O									PS	SO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-	2	3	-	-	-	-	2	-	-	-
2	3	2	ı	•	•	3	3	-	-	-	-	2	-	-	-
3	3	-	1	-	-	2	2	-	-	-	-	2	-	-	-
4	3	2	1	1	-	2	2	-	-	-	-	2	-	-	-
5	3	2	1	-	-	2	2	-	-	-	-	1	-	-	-
Avg.	2.8	1.8	1	1	-	2.2	2.4	-	-	-	-	1.8	-	-	-

• 1-low, 2-medium, 3-high, '-"- no correlation

IE3411

WORK SYSTEM DESIGN LABORATORY

L T P C 0 0 3 1.5

OBJECTIVE:

To understand the theory better and apply in practice, practical training is given in the following areas:

- 1. Graphic tools for method study
 - a) outline process chart
 - b) Flow Process Chart
 - c) Two handed process Chart
- 2. Peg board experiment
- 3. Stop watch time study
- 4. Performance rating exercise
- a. Walking rating
 - b. Card dealing
 - 5. Work sampling
 - 6. MTM practice
 - 7. Video BasedTime Study

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Students should be able

CO1: Ability to record and analyze selected tasks using different recording techniques

CO2: Ability to conduct a time study to improve the efficiency of the system.

CO3: Ability to apply MTM to improve the efficiency of the system.

CO4: Ability to conduct the work sampling study to determine the standard time

CO5: Ability to analyze the efficiency of the rating analyst in performance rating exercise

CO's-PO's & PSO's MAPPING

CO's			PC	's									PS	O's	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	-	2	2	-	-	-	-	-	-	-	-	-			2
2	-	2	2	1	-	-	-	-	-	-	-	-		2	
3	-	2	2	-	-	-	-	-	-	-	-	-			2
4	-	2	2	-	-	-	-	-	-	-	-	-			
5	-	2	2		-	-	-	-	-	-	-	-		2	2
AVg.		2	2											2	2

IE3461

OPTIMIZATION LABORATORY

L T P C 0 0 3 1.5

COURSE OBJECTIVES:

- Give adequate exposure to use different optimization software packages for solving Operations Research problems.
- Practice to solve Linear programming problems.
- Learn problem solving techniques, writing algorithms and procedures.
- Solve optimization problems using 'C' programming language.
- Practice C code for simple logic on OR problem.

LABORATORY EXPERIMENTS

Experiment 1: LP Models formulation and solving using softwares

Experiment 2: Formulation of Transportation Problem and solving using software package Experiment 3: Formulation of Assignment Problems and solving using software package

Experiment 4: Solving Maximal Flow problem

Experiment 5: Solving Minimal Spanning Tree problems

Experiment 6: Solving shortest route problems

Experiment 7: Solving Project Management problems

Experiment 8: Solving Waiting line problems
Experiment 9: Solving Queuing problems
Experiment 10: Solving Inventory problems

TOTAL:45 PERIODS

COURSE OUTCOMES:

CO1: Use computer tools to solve a mathematical model for practical problems.

CO2: Acquired knowledge in using Optimization Software Package.

CO3: Ability to develop C++ programming for solving optimization problem.

CO4: Able to design new simple models, like: CPM, MSPT to improve decision – makingdevelop critical thinking and objective analysis of decision problems.

CO5: Ability to use logical thinking for solving OR problem.

CO's-PO's & PSO's MAPPING

CO's			PO's	}									PS	O's	
CO S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		3	3	3	1						1		3	3	
2				2	3									3	
3		3	3	3										3	2
4				3	3						2	3		3	
5	3	2											2	3	
AVg.	3	2.6	3	2.7	2.3						1.5	3	2.5	3	2

IE3551 PRODUCTION AND OPERATIONS MANAGEMENT

L T P C 3 0 0 3

COURSE OBJECTIVES:

- Recognize and appreciate the concept of Production and Operations Management in creating and enhancing a firm's competitive advantages.
- Describe the concept and contribution of various constituents of Production and Operations Management (both manufacturing and service).
- Relate the interdependence of the operations function with the other key functional areas of a firm.
- Teach analytical skills and problem-solving tools to the analysis of the operations problems.
- Apply scheduling and Lean Concepts for improving System Performance.

UNIT I INTRODUCTION

9

Objectives of Operations Management, Scope of Operations Management, Relationship of Operations with other Functional areas, Manufacturing Vs Service sector, Operations Decision making, Phases in Product Design and Development, Product Life Cycle, Process Selection.

UNIT II FORECASTING

9

Need, Determinants of Demand, Demand Patterns, Qualitative Forecasting Methods-Delphi techniques. Market Research, Nominal Group Technique. Quantitative Forecasting methods – Moving Average Methods, Exponential Smoothing Methods, Regression methods, Monitoring and Control of Forecasts, Requirements and Selection of Good forecasting methods.

UNIT III AGGREGATE PLANNING AND MATERIAL REQUIREMENT PLANNING

9

Role of aggregate Product planning, Managerial inputs to Aggregate planning, Pure and Mixed strategies, Mathematical Models for Aggregate planning – Transportation Method, Linear programming Formulation, Linear Decision Rues, Master Production Schedule(MPS), Procedure for developing MPS, MRP -Lot sizing methods – Implementation issues, MRP – II, Introduction to ERP.

UNIT IV CAPACITY MANAGEMENT

9

Measures of capacity, Factors affecting capacity, Capacity Planning, Systematic approach to capacity planning, Long-term and short-term capacity decisions, Tools for capacity planning, Capacity Requirement Planning- Business Process Outsourcing

UNIT VPRODUCTION ACTIVITY CONTROL AND LEAN MANUFACTURING 9 Objectives and Activities of Production Activity Control -JIT- Kanban- Introduction to Scheduling in different types of Production Systems. Lean Manufacturing - Principles – Activities - Tools and techniques - Case studies.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

- CO1: The students will appreciate the role of Production and Operations management in enabling and enhancing a firm's competitive advantages in the dynamic business environment.
- CO2: The students will obtain sufficient knowledge and skills to forecast demand for Production and Service Systems.
- CO3: The students will able to Formulate and Assess Aggregate Planning strategies and Material Requirement Plan.
- CO4: The students will be able to develop analytical skills to calculate capacity requirements and developing capacity alternatives.

CO5: The students will be able to apply scheduling and Lean Concepts for improving System Performance.

CO's-PO's & PSO's MAPPING

CO's						PO's								PSC)'s
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2	1				2	2	2				1		1
2	3	3	3	2	1								2		2
3	3	3	3	2	1								2		2
4	3	3	3	2	1						2	2	2		2
5	3	3	3	2	1		2	2	2		2	2	2		2
AVg.	3	3	2.7	2	2		2	2	2		2	2	2		2

TEXT BOOK:

1. Panneerselvam. R, Production and operations Management, PHI, 3rd Edition, 2012.

REFERENCES:

- 1. Lee J. Krajewski, Manoj K. Malhotra, Larry P. Ritzman, Operations Management: Processes and Supply Chains Pearson Education, 11th Edition, 2015
- 2. Norman Gaither, Greg Frazier, Operations Management, Thomson Learning, 9th Edition, 2002.
- 3. William J Stevenson, Operations Management, McGraw Hill, 13th Edition, 2018.

CPR333 MACHINE DESIGN L T P C

COURSE OBJECTIVES:

- To introduce the students to the fundamentals of machine design, material selection and to solve the basic design problems.
- To introduce the design of bolts & joints and selection of keys.
- To introduce the design of shafts, coupling & brakes.
- To give information about design of gears and belt drives.
- To provides knowledge on various springs and bearings.

UNIT - I INTRODUCTION

9

Fundamentals of Machine Design-Engineering Design, Phases of Design, Design Consideration -Standards and Codes - Selection of Materials -Design against Static and Dynamic Load - Modes of Failure, Factor of Safety, Principal Stresses, Theories of Failure-Stress Concentration,

Stress Concentration Factors, Variable Stress, Fatigue Failure, Endurance Limit, Design for Finite and Infinite Life, Soderberg and Goodman Criteria.

UNIT – II DETACHABLE AND PERMANENT JOINTS

a

Design of Bolts under Static Load, Design of Bolt with Tightening/Initial Stress, Design of Bolts subjected to Fatigue – Keys -Types, Selection of Square and Flat Keys-Design of Riveted Joints and Welded Joints.

UNIT - III SHAFTS AND COUPLING

9

Design of Shaft –For Static and Varying Loads, For Strength and Rigidity-Design of Coupling-Types, Flange, Muff and Flexible Rubber Bushed Coupling.

UNIT – IV GEARS AND BELT DRIVES

9

Design of Spur and Helical Gear Drives-Design of Belt Drives-Flat and V Belts.

UNIT – V SPRINGS AND BEARINGS

q

Design of Helical Spring-Types, Materials, Static and Variable Loads-Design of Leaf Spring-Design of Journal Bearing -Antifriction Bearing-Types, Life of Bearing, Reliability Consideration, Selection of Ball and Roller Bearings.

TOTAL: 45 PERIODS

Note: (Use of PSG Design Data Book is permitted in the University examination)

COURSE OUTCOMES

Upon successful completion of the course, students should be able to:

CO1: To formulate and analyze stresses and strains in machine elements subjected to various loads

CO2: To analyze and design structural joints such as Riveted joints, welded joints, Bolts.

CO3: To analyze and design the components for power transmission like shaft and couplings.

CO4: To analyze and design different types of gears and belts for engineering applications.

CO5: To analyze and design mechanical springs and bearings.

Mapping of Co	Os w	ith P	Os a	and F	SOs	i									
COs/Pos&P							POs	3					PS	Os	
SOs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	3	3	-	1	-	3	-	2	3	-	-	1
CO2	3	3 1 2 3 - 1 - 3 - 2 3 - 1													
CO3	3	3 2 3 2 - 2 - 2 - 3 3 - 2 1													
CO4	3	3 2 3 2 - 2 - 2 - 3 3 - 2 1													
CO5	3	3	2	1	1	-	1	-	2	-	2	3	-	2	1
CO/PO & S 2 2 2 2 - 1 - 3 - 2 3 - 2 1													1		
1 – Slight, 2 – I	Mode	erate	, 3 –	Subs	tanti	al	•			•	•			•	

TEXT BOOKS:

1. Jindal U. C., "Machine Design", Pearson, 2010.

- 2. Joseph Edward Shigley, Charles R. Mischke "Mechanical Engineering Design", McGraw Hill, International Edition, 1992.
- 3. Sharma. C.S. and Kamlesh Purohit, "Design of Machine Elements", Prentice Hall of India Private Limited. 2003.

REFERENCES:

- 1. Bhandari. V.B., "Design of Machine Elements", Tata McGraw-Hill Publishing Company Limited, 2003.
- 2. Robert L.Norton, "Machin Design An Integrated Approach", Prentice Hall International Edition, 2000.

IE3511

ERGONOMICS LABORATORY

L T P C 0 0 2 1

OBJECTIVE:

To test the principles of human factors engineering in a laboratory

- 1. Effect of speed of walking on tread mill using heart rate and energy expenditure
- 2. Effect of workload on heart rate using Ergo cycle.
- 3. Evaluation of physical fitness using step test
- 4. Effect of work-rest schedule on physical performance (Ergo cycle / tread mill)
- 5. Development of anthropometric data for male and female.
- 6. Application of anthropometric data for the design of desk for students
- 7. Evaluation of physical facilities (chairs, tables etc.) Through comfort rating.
- 8. Analysis of noise level in different environment
- 9. Study of Illumination of work places.
- 10. Evaluation of cognitive performance of individuals

TOTAL: 30 PERIODS

COURSE OUTCOMES:

The Students should be able to

CO1: Ability to design equipment and the workplace to fit people

CO2: Ability to design the workplace with ergonomics consideration

CO3: Ability to conduct an ergonomic analysis for physical ergonomics topics

CO4: Ability to design the desk and chair considering anthropometric data

CO5: Ability to assess the cognitive performance of the individuals.

CO	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PS0	PS1	PS2
CO1	1	1	2	2	1								2		2
CO2		2	2	1	2								2		2
CO3		1	2	3	2								2		2
CO4		2	2	3	2								2		2
CO5		2	2	2	2								2		2
Avg	1	1.6	2	2.2	1.8								2		2

COURSE OBJECTIVES:

- To acquaint the skills and practical experience in handling 2D drafting and 3D modelling software systems, standard drawing practices using fits and tolerances.
- 2 To prepare assembly drawings both manually and using standard CAD packages.
- 3 To Preparing standard drawing layout for modeled parts, assemblies with BoM.

PART I DRAWING STANDARDS & FITS AND TOLERANCES

12

Code of practice for Engineering Drawing, BIS specifications – Welding symbols, riveted joints, keys, fasteners – Reference to hand book for the selection of standard components like bolts, nuts, screws, keys etc. - Limits, Fits – Tolerancing of individual dimensions IS919- Specification of Fits – Preparation of production drawings and reading of part and assembly drawings, basic principles of Geometric Dimensioning &Tolerancing.

PART II 2D DRAFTING

48

Drawing, Editing, Dimensioning, Layering, Hatching, Block, Array, Detailing, Detailed Drawing.

- 1. Bearings Bush Bearing,
- 2. Valves Safety and Non-return Valves.
- 3. Couplings Flange, Oldham's, Muff, Gear couplings.
- 4. Joints Universal, Knuckle, Gib& Cotter, Strap, Sleeve &Cotter joints.
- 5. Engine parts Piston, Connecting Rod, Crosshead (vertical and horizontal), Stuffing box, multiplate clutch.
- 6. Machine Components Screw Jack, Machine Vice, LatheTail Stock, Lathe Chuck, Plummer Block,Vane and Gear pumps.

Total: 20% of classes for theory classes and 80% of classes for practice

Note: 25% of assembly drawings must be done manually and remaining 75% of assembly drawings must be done by using any CAD software. The above tasks can be performed manually and using standard commercial 2D CAD software.

TOTAL:60 PERIODS

OUTCOMES: At the end of the course the students would be able to

- 1. Prepare standard drawing layout for modelled assemblies with BoM.
- 2. Model orthogonal views of machine components.
- 3. Prepare standard drawing layout for modelled parts

TEXT BOOKS:

- 1. Gopalakrishna K.R., "Machine Drawing", 17th Edition, Subhas Stores Books Corner, Bangalore,2003.
- 2. N. D. Bhatt and V.M. Panchal, "Machine Drawing", 51st Edition, Charator Publishers, 2022.

REFERENCES:

- 1. K. L Narayana, P.Kannaiah, K.Venkata Reddy, Machine Drawing, 15 Edition, New Age International Publication
- 2. Goutam Pohit and Goutam Ghosh, "Machine Drawing with AutoCAD", 1st Edition, Pearson Education, 2004
- 3. Junnarkar, N.D., "Machine Drawing", 1st Edition, Pearson Education, 2004
- 4. N. Siddeshwar, P. Kanniah, V.V.S. Sastri," Machine Drawing", published by Tata McGrawHill,2006
- 5. S. Trymbaka Murthy, "A Text Book of Computer Aided Machine Drawing", CBS Publishers, New Delhi, 2007

	РО										F	PSO			
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	2			3				3	2		3	2	2	2

2	1	2		3			3	2	3	2	2	2
3	1	2		3			3	2	3	2	2	2
			L	ow (1)	 1ediun	n (2);	Hi	gh (3)				

IE3651

MANUFACTURING AUTOMATION

L T P C 3 0 0 3

COURSE OBJECTIVES:

- Understanding the need for automation and its justification in manufacturing.
- Understanding the control technologies in automation.
- Explain the concept of fixed automation using transfer lines.
- Describe the programmable automation such as CNC and industrial robotics.
- Use of automated material handling, storage and data capture.

UNIT I MANUFACTURING OPERATIONS

9

Automation in production systems, principles and strategies, Product/production relationships, Production concepts and mathematical models, manufacturing metrics and economics.

UNIT II CONTROL TECHNOLOGIES

9

Automated systems – elements, functions, levels, Continuous Vs discrete control, Computer Process control, Sensors, Actuators, ADC, DAC, Programmable logic controllers – ladder logic diagrams.

UNIT III TRANSFER LINES

9

Automated production lines – applications, Analysis – with and without buffers, automated assembly systems, line unbalancing concept.

UNIT IV NUMERICAL CONTROL AND ROBOTICS

9

Fundamentals of NC Technology – CNC – Analysis of Positioning Systems- Part programming – DNC – Adaptive control – Robot anatomy – Specifications – Accuracy and Repeatability-End effectors – Industrial applications.

UNIT V AUTOMATED HANDLING AND STORAGE

9

TOTAL: 45 PERIODS

Automated guided vehicle systems, AS/RS, Carousel storage, Automatic data capture - Bar code technology.

COURSE OUTCOMES:

CO1: Selection of automated equipment with cost justification.

CO2: Ability to choose a control technology for a specific application.

CO3: Identifying suitable buffer location and determining size of the buffer

CO4: Ability to prepare a simple CNC program, select a robot configuration for given application.

CO5: Recommend an appropriate automated material handling, storage and data capture method.

CO's			PO's										PS	O's	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	3			2			1			3				
2	2	3	3								1			3	3
3	2	3	3											2	1

4	2	3							1	2	3
5	2	3		2				2	3	1	1
AVg.	2	3	3	2		1		2	2.5	2	2

TEXT BOOK:

1. Mikell P.Groover, "Automation, Production Systems, Computer Integrated Manufacturing" Fourth Edition, PHI, 2016.

REFERENCES:

1. Mikell P.Groover, Emory W. Zimmers, Jr., "CAD/CAM: Computer - Aided Design and Manufacturing", PHI, 2007.

IE3611

AUTOMATION LABORATORY

L T P C 0 0 2 1

COURSE OBJECTIVES:

- Write CNC programming using G-code and M-code
- Develop robot control programs
- Use of PLC for actuation.
- Design ladder logic for automation.
- Develop PLC program for automation.

LIST OF EXPERIMENTS:

- 1. Part programming and Machining of Simple Turning using CNC Lathe
- 2. Part programming and Machining of Taper Turning using CNC Lathe
- 3. Part programming and Machining using Multiple Turning cycle in CNC Lathe
- 4. Part programming and Simulation of Thread Cutting using CNC Lathe
- 5. Part programming and Machining of Contour using CNC Milling Machine
- 6. Part programming and Machining using Mirroring Cycle in CNC Milling Machine
- 7. Programming Exercise for Robots
- 8. Programming of PLC using Ladder Logic Diagram
- 9. PLC Programming Experiment 1
- 10. PLC Programming –Experiment 2

TOTAL: 30 PERIODS

COURSE OUTCOMES:

CO1: Ability to write CNC programming using G-code and M-code .

CO2: Ability to write programming for robot control.

CO3: Ability to use PLC for actuation.

CO4: Ability to design ladder logic for automation.

CO5: Ability to write PLC program for automation.

CO's			PO's										PS	O's	
CUS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2		3		3							2	3		2
2	2		3		3							2	2	2	2
3	2		3		3							2	2	2	1
4	2		3		3							2	2	1	
5	2		3		3							2	2	1	1
AVg.	2		3		3							2	2.2	1.5	1.5

COURSE OBJECTIVE:

- Define the basics of simulation modeling and replicating the practical situations in organizations
- Generate random numbers and random variates using different techniques.
- Develop simulation model using heuristic methods.
- Analysis of Simulation models using input analyzer, and output analyzer
- Explain Verification and Validation of simulation model.

UNIT I INTRODUCTION

9

Systems – Modelling – types – systems components – Simulation basics

UNIT II RANDOM NUMBERS/VARIATES

9

Random numbers – methods of generation – random variates for standard distributions like uniform, exponential, Poisson, binomial, normal etc – Testing of Random variates – MonteCarloSimulation

UNIT III DESIGN OF SIMULATION EXPERIMENTS

9

Steps on Design of Simulation Experiments – Development of models using of High-level language for systems like Queuing, Inventory, Replacement, Production etc., – Modelvalidation and verification, Output analysis.

UNIT IV SIMULATION LANGUAGES

9

Need for simulation Languages – Comparisons & Selection of Languages – Study of any one of the languages

UNIT V CASE STUDIES USING SIMULATION LANGUAGES

9

Waiting line models, inventory models, and production models.

TOTAL: 45 PERIODS

COURSE OUTCOMES

CO1: Able to generate random numbers and random variates.

CO2: Able to test the statistical stability of random variates

CO3: Able to develop simulation models for real life systems

CO4: How to use simulation language to simulate and analyze various problems.

CO5: Able to solve waiting line model, inventory models and production models problems using simulation software.

CO's			PO's										PS	O's	
CO S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	3		2											
2	2	3		3											

3		1	2					3			
4	2	2	3	3	2				3		
5		2	2	3	3						
AVg.	2.5	2.1	2.3	2.7	2.5			3	3		

REFERENCES:

- 1. David Kelton, Rondall P Sadowski and David T Sturrock, "Simulation with Arena", McGraw Hill,2004.
- 2. Jerry Banks, JohnSCorson, Barry.L. Nelson, DavidM.Nicol and P.Shahabudeen, Discrete Event Systems Simulation, Pearson education, Fourth edition, 2007.
- 3. Law AM and Kelton WD, Simulation Modelling and analysis, Tata McGraw Hill, 2003.
- 4. Thomas J Schriber, "Simulation Using GPSS", JohnWiley, 2002.

IE3792

SUPPLY CHAIN MANAGEMENT

L T P C 3 0 0 3

COURSE OBJECTIVES

- Describe the role and drivers of and supply chain management in achieving competitiveness.
- Explain about Supply Chain Network Design.
- Illustrate about the issues related to Logistics in Supply Chain.
- Appraise about Sourcing and Coordination in Supply Chain.
- Application of Information Technology and Emerging Concepts in Supply Chain.

UNIT I STRATEGIC FRAMEWORK

9

Role of Logistics and Supply Chain Management: Scope and Importance - Evolution of Supply Chain - Examples of supply Chains - Decision Phases in Supply Chain - Competitive and Supply Chain Strategies - Drivers of Supply Chain Performance and Obstacles.

UNIT II SUPPLY CHAIN NETWORKS

9

Distribution networks, Facility networks and design options, Factors influencing, Modelsfor facility location and capacity allocation, Transportation networks and design options, Evaluating network designdecisions

UNIT III MANAGING DEMAND AND SUPPLY IN A SUPPLY CHAIN

q

Predictable variability in a supply chain, Economies of scale and uncertainty in a supplychain–Cycleandsafety Inventory, Optimum level of product availability, Forward Buying, Multi-echeloncycle inventory

UNIT IV SOURCING AND PRICING IN A SUPPLY CHAIN

9

Cross-Functional drivers, Role of sourcing in a supply chain, Logistics providers, Procurement process, Supplier selection, Design collaboration, Role of Pricing and Revenue Management in a supply chain

UNIT V INFORMATION TECHNOLOGY AND COORDINATION IN A SUPPLY CHAIN

The role of IT in supply chain, The supply chain IT frame work, Customer Relationship Management, Supplier relationship management, Future of IT in supply chain, E-Business in supply chain, Bullwhip effect – Effect of lack of co-ordination in supplychain, Building strategic partnerships, CPFR

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After undergoing this course, students will acquire

CO1: Ability to understand the scope of Supply Chain Management and the Drivers of SC performance.

CO2: Ability to design suitable SC network for a given situation.

CO3: Ability to solve the issues related to Logistics in SCM.

CO4: Ability to understand Sourcing, Coordination and current issues in SCM.

CO5: Ability to appraise about the applications of IT in SCM and apply SCM concepts in selected enterprise.

CO's-PO's & PSO's MAPPING

CO's			PO's	1									PS	O's	
CO S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1									2			2		3	
2		3	3	2											
3		3	3		3										3
4		2	3			2						2	2		
5					2										
Avg.		2.8	3	2	2.5	2			2			2	2	3	3

TEXT BOOK:

1. Sunil Chopra, Peter Meindl and D.V. Kalra, "Supply Chain Management: Strategy, Planning, and Operation", Pearson Education, 2016.

REFERENCES:

- 1. Ravi Ravindran A, Donald P. Warsing, Jr, "Supply Chain Engineering: Models and Applications", "CRC Press, 2012.
- 2. Srinivasan G.S, "Quantitative models in Operations and Supply Chain Management", PHI, 2010

GE3791

HUMAN VALUES AND ETHICS

LT P C 2 0 0 2

COURSE DESCRIPTION

This course aims to provide a broad understanding about the modern values and ethical principles that have evolved and are enshrined in the Constitution of India with regard to the democratic, secular and scientific aspects. The course is designed for undergraduate students so that they could study, understand and apply these values in their day to day life.

COURSE OBJECTIVES:

- > To create awareness about values and ethics enshrined in the Constitution of India
- To sensitize students about the democratic values to be upheld in the modern society.
- > To inculcate respect for all people irrespective of their religion or other affiliations.
- To instill the scientific temper in the students' minds and develop their critical thinking.
- > To promote sense of responsibility and understanding of the duties of citizen.

UNIT I DEMOCRATIC VALUES

6

Understanding Democratic values: Equality, Liberty, Fraternity, Freedom, Justice, Pluralism, Tolerance, Respect for All, Freedom of Expression, Citizen Participation in Governance – World Democracies: French Revolution, American Independence, Indian Freedom Movement.

Reading Text: Excerpts from John Stuart Mills' On Liberty

UNIT II SECULAR VALUES

6

Understanding Secular values – Interpretation of secularism in Indian context - Disassociation of state from religion – Acceptance of all faiths – Encouraging non-discriminatory practices.

Reading Text: Excerpt from Secularism in India: Concept and Practice by Ram Puniyani

UNIT III SCIENTIFIC VALUES

6

Scientific thinking and method: Inductive and Deductive thinking, Proposing and testing Hypothesis, Validating facts using evidence based approach – Skepticism and Empiricism – Rationalism and Scientific Temper.

Reading Text: Excerpt from *The Scientific Temper* by Antony Michaelis R

UNIT IV SOCIAL ETHICS

6

Application of ethical reasoning to social problems – Gender bias and issues – Gender violence – Social discrimination – Constitutional protection and policies – Inclusive practices.

Reading Text: Excerpt from 21 Lessons for the 21st Century by Yuval Noah Harari

UNIT V SCIENTIFIC ETHICS

6

TOTAL: 30 PERIODS

Transparency and Fairness in scientific pursuits – Scientific inventions for the betterment of society - Unfair application of scientific inventions – Role and Responsibility of Scientist in the modern society.

Reading Text: Excerpt from *American Prometheus: The Triumph and Tragedy of J.Robert Oppenheimer* by Kai Bird and Martin J. Sherwin.

COURSE OUTCOMES

Students will be able to

CO1: Identify the importance of democratic, secular and scientific values in harmonious functioning of social life

CO2: Practice democratic and scientific values in both their personal and professional life.

CO3: Find rational solutions to social problems.

CO4: Behave in an ethical manner in society

CO5: Practice critical thinking and the pursuit of truth.

REFERENCES:

- 1. The Nonreligious: Understanding Secular People and Societies, Luke W. Galen Oxford University Press, 2016.
- 2. Secularism: A Dictionary of Atheism, Bullivant, Stephen; Lee, Lois, Oxford University Press, 2016
- 3. The Oxford Handbook of Secularism, John R. Shook, Oxford University Press, 2017.
- 4. The Civic Culture: Political Attitudes and Democracy in Five Nations by Gabriel A. Almond and Sidney Verba, Princeton University Press,
- 5. Research Methodology for Natural Sciences by Soumitro Banerjee, IISc Press, January 2022

COURSE OBJECTIVES:

- Develop C program to generater and number and random variates.
- Develop C program to test random number and random variates.
- Apply Montecarlo simulation for random walk problem and paper vendor problem
- Develop simulation model using simulation software for different gueuing models.
- DevelopsimulationmodelusingsimulationsoftwareforInventorymodels.

LIST OF EXPERIMENTS:

- 1. Generate Random Number by Mid Square, Midpoint and Congruential method using 'C'program.
- 2. GeneratePoissonrandomVariate, uniform random Variate using 'C' program.
- 3. GenerateNormalrandomVariate, Binomial random Variate using 'C' program.
- 4. Testing random numbers and random variates for their uniformity.
- 5. Testing random numbers and random variates for their independence.
- 6. Solve random walk problem using Monte Carlo simulation.
- 7. Solve paper vendor problem using Monte Carlo simulation.
- 8. Solve single server queuing model using simulation software package.
- 9. Solve multi server queuing model using simulation software package.
- 10. Solve inventory model using simulation software package.

SOFTWARES REQUIREMENTS:

Simulation software package

TOTAL: 30 PERIODS

COURSE OUTCOMES:

CO1: Know to generates random number and random variates

CO2: Learn to test the random number and random variates

CO3: AbletoapplyMonteCarlosimulationstorandom walkandpapervendorproblems.

CO4: Able toapplysimulationsoftwaretovariousqueuingmodels.

CO5: Know to use simulation software to various inventory models.

CO's			PO's										PS	O's	
CO S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		3	3	3	2								2		
2				3	3								2	2	
3		3	3	3	2								2		
4				3	3								2	3	
5													2		
AVg.		3	3	3	2.6								2	2.5	

TOTAL: 300 PERIODS

COURSE OBJECTIVES:

The objectives of this course are to:

- 1. To make them understand the concepts of Project work for planning to execution of projects.
- 2. To make them understand the feasibility analysis in Project work and network
- 3. analysis tools for cost and time estimation.
- 4. To enable them to comprehend the fundamentals.
- 5. Make them capable to analyze, apply and appreciate contemporary project work tools and methodologies

To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same. To train the students in preparing project reports and to face reviews and viva voce examination. The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepare a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

COURSE OUTCOME:

On completion of this course, the students will be able to:

CO1: Understand project characteristics and various stages of a project.

CO2: Understand the conceptual clarity about project organization and feasibility analyses and Technical.

CO3: Analyze the learning and understand techniques for Project work planning, scheduling and Execution.

CO4: Understand the report preparation and presentation.

CO5: Understand the How present in conference and facing the guires.

CO's						PC)'s							PSO's	;
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	2		3	1	1	1				3	3		2
2	3	2			2							2	2		2
3	2	3	3		2							2	3		2
4	2	1			2							2	3		2
5	3	3	2		2							2	2		2
AVg.	2.6	2.4	2.3		2.2	1	1	1				2.2	2.6		2

VERTICAL 1: OPERATIONS AND SUPPLY CHAIN MANAGEMENT

CIE331

PROJECT MANAGEMENT

LTPC 3 0 0 3

COURSE OBJECTIVES:

- Knowledge to evaluate and select the most desirable projects.
- Ability to plan and implement the projects.
- Ability to control the projects.
- Knowledge to close the projects.
- Knowledge about software projects.

INTRODUCTION TO PROJECT UNIT I MANAGEMENT **PROJECT** AND SELECTION

Objectives of Project Management- Importance of Project Management- Types of Projects Project Selection – Feasibility study: Types of feasibility- Steps in feasibility study.

PROJECT RISK MANAGEMENT **UNIT II**

9

Project Management Life Cycle- Risk Management Process -Risk identification, Assessment, Monitoring and Control- Qualitative and quantitative risk analysis techniques.

PROJECT PLANNING AND IMPLEMENTATION

Work break down structure- Estimate work packages - Identify task relationship - project schedule

PROJECT MONITORING AND CONTROL **UNIT IV**

Resource aggregations - Resource levelling - limited resource allocation - project monitoring and control.

UNIT V PROJECT CLOSURE AND SPECIAL TOPICS

9

Process project audit - post project audit - normal project closure - premature closure perpetual project - project closure process. Project management for modern information system - critical success factors for IT project - software project selection and initiation project management discipline – project overall planning **TOTAL: 45 PERIODS**

COURSE OUTCOMES:

CO1: Evaluate and select the most desirable projects.

CO2: Apply appropriate approaches to plan a new project.

CO3: Apply appropriate methodologies to develop a project schedule.

CO4: Identify important risks facing a new project.

CO5: Understanding the project management skills in IT industries.

CO's			PO's										PS	O's	
CO S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3										2		1		
2	3										2		1		
3	3										3			1	
4	3										3			1	1
5	3										3				
AVg.	3										2.6		1	1	1

TEXT BOOK:

1. Arun Kanda, "Project Management A Life Cycle Approach", Prentice Hall of India, 2011.

REFERENCES:

- 1. Panneerselvam R and Senthilkumar P, "Project Management", Prentice Hall of India, 2009.
- 2. Khanna R B, "Project Management", Prentice Hall of India, 2011

CIE332 PRODUCT DESIGN AND VALUE ENGINEERING

L T P C 3 0 0 3

COURSE OBJECTIVES:

- Relate product development integrated with value engineering.
- Summarize the development of new products through conceptualization, design and development phases.
- Relate various aspects of product development with industrial design and manufacturing.
- Describe the value of a product using tools and techniques.
- Design products which are suitable for the needs of the society.

UNIT I VALUE ENGINEERING BASICS

g

Origin of Value Engineering, Meaning of value, Definition of Value Engineering and Value analysis, Difference between Value analysis and Value Engineering, Types of Value, function - Basic and Secondary functions, concept of cost and worth, creativity in Value Engineering.

UNIT II VALUE ENGINEERING JOB PLAN AND PROCESS

q

Seven phases of job plan, FAST Diagram as Value Engineering Tool, Behavioural and organizational aspects of Value Engineering, Ten principles of Value analysis, Benefits of Value Engineering.

UNIT III IDENTIFYING CUSTOMER NEEDS and PRODUCT SPECIFICATIONS 9 Product Development process – Product development organizations. Gather raw data – Interpret raw data- organize the needs into a hierarchy – Relative importance of the needs. Specifications – Refining specifications.

UNIT IV CONCEPT GENERATION, SELECTION AND PRODUCT ARCHITECTURE

9

Clarify the problem – Search internally – Search externally – Explore systematically. Concept Screening – Concept scoring. Product architecture – Implication of architecture – Establishing the architecture – Related system level design issues.

UNIT V INDUSTRIAL DESIGN, PROTOTYPING AND ECONOMICS OF PRODUCT DEVELOPMENT 9

Need for industrial design – Impact of industrial design – Industrial design process – Management of industrial design process – Assessing the quality of industrial design.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: The Students should be able to understand the basic concept of product development.

CO2: Design and develop new products in a systematic manner considering the concept of value engineering.

CO3: Able to understand customer requirements.

CO4: Able to understand product architecture.

CO5: Able to do prototyping.

CO's-PO's & PSO's MAPPING

CO's			PO's										PS	O's	
CO S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		3			3									2	
2		2	3										3	2	3
3		3	3											2	
4		3	2												
5		2	3												
AVg.		2.6	2.7		3								3	2	3

TEXT BOOKS:

- 1. Karal, T.Ulrich Steven D.Eppinger, "Prodcut Design and Development", McGraw Hill, International Editions, 2003.
- 2. Mudge, Arthur E. "Value Engineering"- A systematic approach, McGraw Hill, New York, 2000.

REFERENCES:

- 1. Charles Gevirtz, "Developing New products with TQM", McGraw Hill, International Editions, 1994.
- 2. Rosenthal S, "Effective Product Design and Development", Irwin, 1992.

CIE333 FACILITY DESIGN L T P C

COURSE OBJECTIVES:

- Explain the basic principles in facilities planning and plant location.
- Interpret the basic principles in facility layout design decisions through proper analysis.
- Illustrate and explain various modern trends while designing a layout.
- Develop knowledge in line balancing concepts to implement improved system.
- Summarize basic principles in designing, measuring and analyzing material flow to improve the efficiency of the system.

UNIT I PLANT LOCATION

9

Introduction, Factors affecting location decisions, Qualitative models, Quantitative models, Break-Even analysis model, Brown & Gibbs model, Single facility location models, Gravity location models, Mini-Sum model, Mini-Max model, Multi facility location models, Covering model, Warehouse location model.

UNIT II FACILITIES LAYOUT DESIGN

9

Need for layout study, COURSE OBJECTIVES of a good facility layout, Classification of layout, Layout procedure – Nadler's ideal system approach – Immer's basic steps – Apple's layout procedure – Reed's layout procedure, Layout planning – Systematic layout planning(SLP) – Information gathering, Flow analysis & Activity analysis, Relationship diagram, Space requirement and availability, Designing the layout.

UNIT III COMPUTERIZED LAYOUT PLANNING

9

Designing the process layout – CRAFT, ALDEP, CORELAP – Trends in computerized layout, Group technology models – Production flow analysis (PFA) – Rank order clustering (ROC).

UNIT IV DESIGNING PRODUCT LAYOUT

q

Line balancing – COURSE OBJECTIVES, Line balancing techniques – Largest candidate rule (LCR) – Kilbridge & Wester method (KWM) – Rank Positional Weight method (RPW) – COMSOAL, Mixed model assembly line balancing.

UNIT V MATERIALS HANDLING AND PACKAGING

9

TOTAL: 45 PERIODS

Scope and definitions of material handling – COURSE OBJECTIVES, Principles of material handling, Unit load concept, Material handling system design, Classification of material handling equipments, Equipment selection & specification, JIT impact on facilities design, Packaging.

COURSE OUTCOMES:

Students should be able to

CO1: apply and evaluate appropriate location models for various facility types.

CO2: effectively design and analyze various facility layouts.

CO3: apply and analyze various computerized techniques while designing a layout.

CO4: effectively implement a strategy to level the workload across all the workstations.

CO5: implement smooth and cost effective system in the material handling process.

CO's-PO's & PSO's MAPPING

CO's			PO's	3									PS	O's	
CO S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3													3	
2		2	3										1	3	2
3		3	2	3											
4		3	2	3											2
5			2	3										2	
AVg.	3	2.6	2.2	3									1	2.6	2

TEXT BOOK:

1. Tompkins, J.A. and White J A et al., "Facilities planning", John Wiley & Sons, 2010.

REFERENCES:

- 1. James, Apple, "Material Handling System Design", Ronald Press, 1980.
- 2. Krajewski. J and Ritzman, "Operations management Strategy and Analysis", Addison Wesley publishing company, 5th edition, 1999.
- 3. Pannerselvam.R. "Production and Operations Management", PHI, 2017
- 4. Richard Francis. L. and John A. White, "Facilities Layout and location an analytical approach", PHI., 2002.

COURSE OBJECTIVES:

- To understand concepts and philosophy of Business Process Reengineering.
- To learn various BPR and alternate methodologies TQM, Work Study, ISO standards practiced in the industry.
- To understand and analyze the role of Information Technology and change management in the implementation of BPR.
- To expose practically BPR implementation and best practices through research papers and case discussions.

UNIT I PROCESS VIEW OF BUSINESS

9

Definition and Dimensions of Business Process, Generic Process Framework, The Capability Maturity Model Integration (CMMI), Design Process and Design Quality, Requirement Engineering, Design Concepts

UNIT II BPR: METHODOLOGIES AND TECHNIQUES & APPLICATIONS 9
Introduction and History of BPR, Definition and Benefits of BPR, BPR Model, BPR Methodology Selection Guidelines, steps to implement BPR: Reengineering Approaches: a) Big Bang Approach, b) Incremental Approach, c) Evolutionary Approach, BPR Methodologies: a) Hammer/Champy Methodology, b) Davenport Methodology, c) Manganelli/Klein Methodology, d) Kodak Methodology; Comparison of various methodologies. Case: Dabbawala of Mumbai, A Case Analysis using BPR methodologies

Case: "Re-engineering the construction delivery process, The Museum of Tropical Queensland, Townsville" by R. Kennedy and A. Sidwell.

UNIT III CRITICAL SUCCESS FACTORS ANALYSIS

9

Reengineering Success Factors, Risks associated with BPR, Barriers to BPR, Case: Analysis on "Pillsbury: Customer Driven Reengineering", Barriers Management, Case: "Walmart China-Supply Chain Transformation"

UNIT IV BPR Vs OTHER IMPROVEMENT APPROACHES

۵

Optimization Techniques, Process Simplification, Case: "Aviation Spare Parts Supply Chain Management Optimization at Cathay Pacific Airways Ltd". TQM: ISO 9000 – QMS/EMS/IMS, Quality Policy, Quality Manual, SIPOC, Procedure Manual, Work Sheets, Quality Audit, Six Sigma, QMS, ISO in Higher Education Institutions, IACBE Accreditation in Education, Restructuring, 5 S Technique, Benchmarking, Work Study, Knowledge Management

UNIT V INFORMATION TECHNOLOGY AND BPR

9

Role of IT in Reengineering, Criticality of IT in Business Process, BPR Team Characteristics, Threads of BPR in Various Phases, Case: "Otis Elevator: Accelerating Business Transformation with IT", BPR, SAP and ERP, Elements of ERP, Applications of ERP

COURSE OUTCOMES:

On completion of this course, the students will be able to

- **CO1.** Understanding various BPR methodologies and their applications.
- **CO2.** Understanding the critical success factors for implementing BPR.
- **CO3.** Appreciate various alternative techniques of BPR TQM, Work Study, Benchmarking and their applications.
- **CO4.** Basic understanding of ISO standard 9001:2015, IACBE and their applications in education and industry.
- **CO5.** Analyze and integrate issues and challenges of applying tools/techniques of Information Technology for BPR and learn to apply them in the industry.

CO's-PO's & PSO's MAPPING

CO's				PSO's											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	3		2	1	1								1	2
2		2											2		2
3			3	2										2	
4	2	2	3										1		
5	1	2		2											2
AVg.	1.8	1.8	3	2	1	1							1.5	1.5	2

TEXT BOOKS:

- 1. R. Radhakrishnan, S. Balasubramanian. (2010). Business Process Reengineering, Text and Cases. Prentice Hall of India, New Delhi.
- 2. Srinivasan, R., Business Process Reengineering. Tata McGraw-Hill Education

REFERENCES:

- 1. Dimitris, N. Chorafas. Integrating ERP, CRM, Supply Chain Management and Smart Materials. ISBN 0-8493-1076-8
- 2. Jayanti Natarjan. (2002). Business Process Reengineering. TMH, New Delhi,
- 3. Kapoor Rajneesh. (2001). Business Process Redesign. Global Business Press, Delhi.
- 4. Richard Johnson Management, (2001). Processes for Quality Operations. Vision Books.
- 5. Roger S. Pressman (2005). Software Engineering A Practitioner's Approach, 6th Edition. Mcgraw- Hill International Edition.
- 6. Siddiqui Moid & Khwaja R.H. (2010). The Acrobatics of Change, 7th Reprint. Sage Publications India Pvt. Ltd. New Delhi.

CIE335 ENTERPRISE RESOURCE PLANNING

L T P C 3 0 0 3

COURSE OBJECTIVES:

- Describe an idea about ERP.
- Grasp the activities of ERP project management cycle.
- Understanding the emerging trends in ERP developments.
- Creating awareness of core and extended modules of ERP.
- Understand the ERP trending concepts.

UNIT I INTRODUCTION

9

Overview of enterprise systems – Evolution - Risks and benefits - Fundamental technology - Issues to be consider in planning design and implementation of cross functional integrated ERP systems.

UNIT II ERP SOLUTIONS AND FUNCTIONAL MODULES

Q

Overview of ERP software solutions- Small, medium and large enterprise vendor solutions, BPR, and best business practices - Business Process Management, Functional modules.

UNIT III ERP IMPLEMENTATION

9

Planning Evaluation and selection of ERP systems - Implementation life cycle - ERP implementation, Methodology and Frame work- Training - Data Migration. People Organization in Implementation-Consultants, Vendors and Employees.

UNIT IV POST IMPLEMENTATION

9

Maintenance of ERP- Organizational and Industrial impact; Success and Failure factors of ERP Implementation.

UNIT V EMERGING TRENDS ON ERP

9

Extended ERP systems and ERP add-ons -CRM, SCM, Business analytics - Future trends in ERP systems-web enabled, Wireless technologies, cloud computing.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: Knowledge of ERP implementation cycle.

CO2: Awareness of core and extended modules of ERP.

CO3: Able to understand ERP implementation steps.

CO4: Able to understand post implementation procedure.

CO5: Able to understand ERP trending concepts.

CO's			PO's	}									PSO's		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2			2					2				2	
2		1	3										2		3
3	2		3							1					
4	3		3		2									2	
5	2	2								1			3		
AVg.	2.2	1.6	3		2					1.3			2.5	2	3

TEXT BOOK:

1. Alexis Leon, ERP demystified, second Edition Tata McGraw-Hill, 2008.

REFERENCES:

- 1. Alexis Leon, Enterprise Resource Planning, second edition, Tata McGraw-Hill, 2008.
- 2. Jagan Nathan Vaman, ERP in Practice, Tata McGraw-Hill, 2008.
- 3. MahadeoJaiswal and Ganesh Vanapalli, ERP Macmillan India, 2009.
- 4. Sinha P. Magal and Jeffery Word, Essentials of Business Process and Information System, Wiley India, 2012.
- 5. Summer, ERP, Pearson Education, 2008.
- 6. Vinod Kumar Grag and N.K. Venkitakrishnan, ERP- Concepts and Practice, Prentice Hall of India, 2006

CIE336

COST ESTIMATION AND CONTROL

L T PC 3 0 03

COURSE OBJECTIVES:

- Gaining knowledge in the field of cost estimation.
- Enable the students to estimate the cost of various manufacturing processes.
- Controlling the manufacturing and software cost.
- Designing the cost analysis.
- Applying cost estimation procedures in all types of industries.

UNIT I ESTIMATION AND COSTING

9

Course Objectives, Functions, Procedure in Estimation – Importance in Costing – Cost Accounting –Classification of costs–Elements of cost–Estimation in Material cost, Labour cost and overheads Allocation of overheads.

UNIT II PRODUCT COST ESTIMATION

9

Estimation in Forging shop-in welding shop -in Foundry Shop -in Machining Shop etc.,

UNIT III SOFTWARE COST ESTIMATION

9

Software Development Life cycle – Software Cost Estimation Models – COCOMO – AdaCOCOMO – SLIM – PRICES – CHECKPOINT– FUNCTION POINTS.

UNIT IV COSTING METHODS

9

Job costing – Operating costing – Process costing.

UNIT V COST ANALYSIS FOR PLANNING AND CONTROL

9

Marginal costing -Standard costing and Variance Analysis-Budgetary control

TOTAL:45 PERIODS

COURSE OUTCOMES:

CO1: To estimate the manufacturing cost and computation of software cost.

CO2: Able to estimate product cost.

CO3: To control the manufacturing and software cost.

CO4: To enable both the costing and estimating procedures for all type of industry.

CO5: Able to perform cost analysis.

CO's-PO's & PSO's MAPPING

CO's				PSO's											
CO S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2			1								1		
2			3		3							2	2	3	2
3	3	2	3		3									3	
4	3		3												
5		3			2							2			1
AVg.	2.6	2.3	3		2.2							2	1.5	3	1.5

TEXTBOOK:

1. Jawaharlal, Cost Accounting, Tata McGraw Hill, 2013.

REFERENCES:

- 1. Banga TR and Sharma SC, Estimating and Costing, Khanna Publishers, 2001.
- 2. Narang GBS and Kumar V, Production and Costing, KhannaPublishers, 2014.
- 3. Roger, Pressman S, Software Engineering A Practitioner's Approach, Tata McGraw Hill, 2014.

COURSE OBJECTIVES:

- To understand risk management definition & principles in the context of commercial management.
- To understand Risk identification and assessment techniques and tools & Development and justification of risk-driven management decisions.
- To understand supply chain risk management, vulnerability and develop risk response strategies
- Developing an understanding of basic principles of Risk management processes, procedures & Risk analysis techniques.
- To understand how implementation of supply chain risk management strategies can be effective by industry based real world case studies and scenarios illustrating macro and micro-level risks, and approaches to their management.

UNIT I INTRODUCTION TO RISK MANAGEMENT

g

Concept of risk, definition of risk management, levels of risk management within organization, Relationship of risk to possible losses and gains, Concept of Risk and Uncertainty & the Sources, Concept of Risk in terms of Uncertainty, Probability Effect & Outcome, risk and uncertainty: basic concepts, Risk and uncertainty, origin of risk, Typical risk Parameter, Steps in Defining and Measuring Risk, uncertainties, types of uncertainty

UNIT II SOURCES OF RISK

9

Sources of risk, typical Sources of Risk to Business for projects & products- Project Risk Global risk, Elemental Risk, Holistics Risk, Static Risk, Dynamic Risk, Inherent Risk, Contingent Risk, Customer Risk, Fiscal/Regulatory Risk, Purchasing Risk, Reputation/Damage Risk, Organizational Risk, Interpretation Risk, IT risk, OPEC Risk, Process Risk, Heuristic Risk, Decommissioning Risk, Institutional Risk

UNIT III SUPPLY CHAIN RISK MANAGEMENT - I

9

Supply Chain Risk Management: Defining Enterprise Risk Management & Supply Chain Risk Management, reasons for focus on Supply Chain Risk Management, Some Important Risk Concepts: risk event, Risk Exposure and Vulnerability, Risk Resilience, Risk Appetite, Risk Analysis or Assessment, Risk Response Plan, Risk Compliance, Risk Governance, Generic Risk Management Approaches: Risk Mitigation, Risk Avoidance, Risk Prevention, Risk Acceptance, risk sharing.

UNIT IV SUPPLY CHAIN RISK MANAGEMENT - II

9

Pillars of Supply Chain Risk Management- Supply Risk, Process Risk, Demand Risk, Environmental Risk.SCOR model – components- Advantages and disadvantages of SCOR model - SCOR model for supply chain risk management.

UNIT V SUPPLY CHAIN RISK MANAGEMENT ENABLERS

9

Linking Supply Chain Risk Management and Supply Chain Strategy, Integrating Risk Management with Commodity Strategy Development, Strategic Risk, Hazard Risk-First-Party Commercial Property Insurance- Cargo Insurance, Cyber Insurance, Financial Risk, Operational Risk- supply & demand risk, Integration of ISO 31000:2009 and Supply Chain Risk Management, ISO 31000:2009 Enterprise and Supply Chain Risk Management.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

- **CO1**. To understand the concept of risk, uncertainty & risk parameters in the context of commercial management.
- **CO2**. To develop a capacity to critically review the principles and applications of risk and vulnerability management in the context of commercial environments.
- CO3. Analyze risk assessment and mitigation strategies in specific situations.
- **CO4** To apply SCOR model for supply chain risk management.
- **CO5**. Describe supply chain risk management strategies to implement and monitor appropriate management techniques relevant to specific situations

CO's-	PO's	ጲ	PSO's	М	ΔΡΡΙ	NG
UU 3 -	$\mathbf{F} \cup \mathbf{S}$	ш	F 00 3	IVI	\sim	

CO's			PSO's												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	2	2										2		2
2		2	2	2		3	3	3	2	2			2		2
3		3	3	3		3	3	3	2	2			2		2
4		3	3	3		3	3	3	2	2			2		2
5		2	2	2		3	3	3	2	2	3	3	2		2
AVg.	1	2.4	2.4	2.5		3	3	3	2	2	3	3	2		2

TEXT BOOKS

- Bret Wagner, Sime Curkovic & Thomas Scannell(2016) "Managing Supply Chain Risk" CRC Press
- 2. Gregory L. Schlegel & Robert J. Trent(2015) "Supply Chain Risk Management- An Emerging Discipline" CRC Press, ISBN: 978-1-4822-0599-2

REFERENCES

- 1. ManMohan S. Sodhi & Christopher S. Tang,(2012) "Managing Supply Chain Risk, Springer.
- 2. Robert B. Handfield & Kevin Mc Cormack(2008) "Supply chain risk management" Auerbach Publication.
- 3. Rolf G. Poluha(2007) "Application of the SCOR Model in Supply Chain Management" Cambria Press

CIE338

LOGISTICS MANAGEMENT

LTPC 3 0 0 3

OURSE OBJECTIVES:

- Impart the basic knowledge on the concepts on logistics and distribution.
- Inculcate knowledge in Logistics Process, Planning and MaterialsManagement.
- Teach the principles and activities in warehousing andstorage.
- Provide knowledge on modes of transportation and international transport.
- Inculcate knowledge on performance monitoring, outsourcing and ICT application in logistics and distribution

UNIT I INTRODUCTION

9

Definition and Scope of Logistics – Functions & objectives – Customer Value Chain – Service Phases and attributes – Value added logistics services – Role of logistics in Competitive strategy – Customer Service

UNIT II DISTRIBUTION CHANNELS AND OUTSOURCING LOGISTICS 9

Distribution channel structure- channel members, channel strategy, role of logistics and support in distribution channels. Logistics requirements of channel members. Logistics outsourcing — catalysts, benefits, value proposition. Third and fourth party logistics. Selection of service provider.

UNIT III TRANSPORTATION AND PACKAGING

9

Transportation System — Evolution, Infrastructure and Networks. Freight Management — Vehicle Routing – Containerization. Modal Characteristics, Inter-modal Operators and Transport Economies. Packaging - Design considerations, Material and Cost. Packaging as Unitisation. Consumer and Industrial Packaging.

UNIT IV PERFORMANCE MEASUREMENTAND COSTS

9

Performance Measurement - Need, System, Levels and Dimensions. Internaland External Performance Measurement. Logistics Audit. Total Logistics Cost – Concept, Accounting Methods. Cost–Identification, Time Frame and Formatting.

UNIT V CURRENT TRENDS

9

Logistics Information Systems — Need, Characteristics and Design. E-Logistics - Structure andOperation. Logistics Resource Management eLRM. Automatic Identification Technologies. Reverse Logistics — Scope, design and as a competitive tool. Global Logistics — Operational and Strategic Issues, ocean and airtransportation. Strategic logistics planning. Green Logistics

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: Understand the concepts of logistics and distribution

CO2: Effectively gain knowledge in logistics planning

CO3: Apply and analyze various principles and concepts in warehousing and storage

CO4: Effectively design and analyze a system of logistics for freight transport

CO5: Understand the basic concepts in outsourcing, benchmarking and safety in distribution

CO's-PO's & PSO's MAPPING

CO's		PO's													PSO's		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	2	2	1				2	2	2				1		1		
2	2	1	2	2	1								2		2		
3	2	2	2	2	1				2				2		2		
4	2	2	2	2	1				2		2	2	2		2		
5	2	1	1	2	1		2	2	2		2	2	2		2		
AVg.	2	2.6	1.6	2	1		2	2	2		2	2	2		2		

TEXT BOOKS

- Bowersox DonaldJ, LogisticsManagement
 —The Integrated Supply Chain Process, Tata McGraw Hill, 2010
- 2. Sople Vinod V, Logistics Management—The Supply Chain Imperative, Pearson Education, 3rd Edition, 2012.

REFERENCES

- 1. Coyle etal., The Management of Business Logistics, Thomson Learning, 7thEdition, 2004.
- 2. AilawadiC Sathish & Rakesh Singh, Logistics Management, PHI, 2005.
- 3. Bloomberg DavidJ et al., Logistics, PrenticeHallIndia, 2005.
- 4. Pierre David, International Logistics, Biztantra, 2003.
- 5. Ronald H. Ballou, Business Logistics and Supply Chain Management, Pearson Education, 5th Edition, 2007.
- 6. Alan Rushton, Phil Croucher and Peter Baker(Eds.) The Handbook of Logistics and Distribution Management, Kogan Page, 4thEdition,2010.
- 7. Jean-Paul Rodrigue, Claude Comtois and Brian Slack, "The geography of transport systems" (2009), New York: Routledge.

VERTICAL 2: MANUFACTURING SYSTEMS

CIE339 SYSTEMS ENGINEERING

L T P C 3 0 0 3

COURSE OBJECTIVES:

- Illustrate the life cycle phases and framework for systems engineering.
- Describe about systems engineering process.
- Apply ergonomic and system dynamic models for evaluation of alternatives.
- Create knowledge on Reliability, Markov and Time series models for analysis of alternatives.
- Describe about decision assessment methods in systems engineering.

UNIT I INTRODUCTION

9

Definitions of Systems Engineering, Systems Engineering Knowledge, Life cycles, Life-cycle phases, logical steps of systems engineering, Frame works for systems engineering.

UNIT II SYSTEMS ENGINEERING PROCESSES

9

Formulation of issues with a case study, Value system design, Functional analysis, Business Process Reengineering, Quality function deployment, System synthesis, Approaches for generation of alternatives.

UNIT III ANALYSIS OF ALTERNATIVES - I

9

Cross-impact analysis, Structural modeling tools, System Dynamics models with case studies, Economic models: present value analysis – NPV, Benefits and costs over time, ROI, IRR; Work and Cost breakdown structure.

UNIT IV ANALYSIS OF ALTERNATIVES – II

9

Reliability, Availability, Maintainability, and Supportability models; Stochastic networks and Markov models, Queuing network optimization, Time series and Regression models, Evaluation of large scale models

UNIT V DECISION ASSESSMENT

,

Decision assessment types, Five types of decision assessment efforts, Utility theory, Group decision making and Voting approaches, Social welfare function; Systems Engineering methods for Systems Engineering Management

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of this course, the students will

CO1: Be able to recognize life cycle phases in systems engineering.

CO2: Apply steps in systems engineering process for large scale problems.

CO3: Able to develop system dynamic models for analyzing alternatives.

CO4: Gain ability to evaluate alternatives in large scale problems.

CO5: Be able Attain confidence in assessment and arrive decisions for complex problems.

CO's-PO's & PSO's MAPPING

CO's			PO's	•									PS	O's	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	2				2					2	1	3
2	3	3	3	2				2					2		1
3	3	2	2	3	3			2						3	
4	3	3	2	3	3			2					3	2	2
5	3	2	3	3	3			2					3	3	2
AVg.	3	2.6	2.6	2.6	3			2					2.5	2.2	2

TEXT BOOK:

1. Andrew P. Sage, James E. Armstrong Jr. "Introduction to Systems Engineering", John Wiley and Sons, Inc, 2000.

REFERENCES:

- Andrew P.Sage, "Systems Engineering", John Wiley & Sons, 1992.
 Andrew P.Sage, William B.Rouse, "Hand book of Systems Engineering and Management", John Wiley & Sons, 1999.

ME3792 COMPUTER INTEGRATED MANUFACTURING C L

COURSE OBJECTIVES

- To provide the overview of evolution of automation, CIM and its principles.
- To learn the various Automation tools, include various material handling system.
- To train students to apply group technology and FMS.
- To familiarize the computer aided process planning in manufacturing.
- To introduce to basics of data transaction, information integration and control of CIM.

INTRODUCTION

Introduction to CAD, CAM, CAD/CAM and CIM - Evolution of CIM - CIM wheel and cycle -Production concepts and mathematical models - Simple problems in production models - CIM hardware and software – Major elements of CIM system – Three step process for implementation of CIM – Computers in CIM – Computer networks for manufacturing – The future automated factory - Management of CIM - safety aspects of CIM- advances in CIM

AUTOMATED MANUFACTURING SYSTEMS

Automated production line - system configurations, work part transfer mechanisms -Fundamentals of Automated assembly system - System configuration, Part delivery at workstations - Design for automated assembly - Overview of material handling equipments -Consideration in material handling system design - The 10 principles of Material handling. Conveyor systems – Types of conveyors – Operations and features. Automated Guided Vehicle system – Types & applications – Vehicle guidance technology – Vehicle management and safety. Storage system performance – storage location strategies – Conventional storage methods and equipments – Automated storage/Retrieval system and Carousel storage system Deadlocks in Automated manufacturing systems – Petrinet models – Applications in Dead lock avoidance – smart manufacturing – Industry 4.0 - Digital manufacturing – Virtual manufacturing

UNIT – III GROUP TECHNOLOGY AND FMS

9

Part families – Visual – Parts classification and coding – Production flow analysis – Grouping of parts and Machines by rank order clustering method – Benefits of GT – Case studies. FMS – Components – workstations – FMS layout configurations – Computer control systems – FMS planning and implementation issues – Architecture of FMS – flow chart showing various operations in FMS – Machine cell design – Composite part concept, Holier method, Key machine concept – Quantitative analysis of FMS – Bottleneck model – Simple and complicated problems – Extended Bottleneck model - sizing the FMS – FMS applications, Benefits.

UNIT – IV PROCESS PLANNING

9

Process planning – Activities in process planning, Informations required. From design to process planning – classification of manufacturing processes – Selection of primary manufacturing processes – Sequencing of operations according to Anteriorities – various examples – forming of Matrix of Anteriorities – case study. Typical process sheet – case studies in Manual process planning. Computer Aided Process Planning – Process planning module and data base – Variant process planning – Two stages in VPP – Generative process planning – Flow chart showing various activities in generative PP – Semi generative process planning- Comparison of CAPP and Manual PP.

UNIT – V PROCESS CONTROL AND DATA ANALYSIS

9

Introduction to process model formulation – linear feedback control systems – Optimal control – Adaptive control –Sequence control and PLC& SCADA. Computer process control – Computer process interface – Interface hardware – Computer process monitoring – Direct digital control and Supervisory computer control - Overview of Automatic identification methods – Bar code technology –Automatic data capture technologies.- Quality management (SPC) and automated inspection

TOTAL: 45 PERIODS

OUTCOMES: At the end of the course the students would be able to

- 1. Discuss the basics of computer aided engineering.
- 2. Choose appropriate automotive tools and material handling systems.
- 3. Discuss the overview of group technology, FMS and automation identification methods.
- 4. Design using computer aided process planning for manufacturing of various components
- 5. Acquire knowledge in computer process control techniques.

TEXT BOOKS:

- 1. Shivanand H K, Benal M M and Koti V, Flexible Manufacturing System, New Age, 2016.
- 2. CIM: Computer Integrated Manufacturing: Computer Steered Industry Book by August-Wilhelm Scheer

- 1. Alavudeen and Venkateshwaran, Computer Integrated Manufacturingll, PHI Learning Pvt. Ltd., New Delhi, 2013.
- 2. Gideon Halevi and Ronald D. Weill, Principles of Process Planning II, Chapman Hall, 1995.
- 3. James A. Retrg, Herry W. Kraebber, Computer Integrated Manufacturingll, Pearson Education, Asia,3rdEdition,2004.

- 4. Mikell P. Groover, Automation, Production system and Computer integrated Manufacturing, Prentice Hall of India Pvt. Ltd., 4thEdition, 2014.
- 5. Radhakrishnan P, Subramanian S and Raju V, CAD/CAM/CIM, New Age International Publishers, 3rd Edition, 2008.

						Р	0							PSO	
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	2	1	2				1			1	2	1	3
2	3	2	2	1	2				1			1	2	1	3
3	3	2	2	1	2				1			1	2	1	3
4	3	2	2	1	2				1			1	2	1	3
5	3	2	2	1	2				1			1	2	1	3
					Low (1);	Mediu	um (2));	High	(3)				

CIE340

FLEXIBLE MANUFACTURING SYSTEMS

LT PC 3 0 0 3

COURSE OBJECTIVES:

- To understand the Modern manufacturing systems
- To understand the concepts and applications of flexible manufacturing systems
- To apply the knowledge of FMS simulation
- To understand the concepts of group technology
- To apply the concepts of FMS in modern machining

UNIT I PLANNING, SCHEDULING AND CONTROL OF FLEXIBLE MANUFACTURING SYSTEMS 9

Introduction to FMS - development of manufacturing systems - benefits - major elements of FMS - types of flexibility - FMS application and flexibility -single product, single batch, n - batch scheduling problem - knowledge based scheduling system.

UNIT II COMPUTER CONTROL AND SOFTWARE FORFLEXIBLE MANUFACTURING SYSTEMS

Introduction - composition of FMS - hierarchy of computer control - computer control of work center and assembly lines - FMS supervisory computer control - types of software specification and selection -trends.

UNIT III FMS SIMULATION ANDDATABASE

a

TOTAL: 45 PERIODS

Application of simulation - model of FMS - simulation software - limitation - manufacturing data systems - data flow - FMS database systems - planning for FMS database.

UNIT IV GROUP TECHNOLOGY AND JUSTIFICATION OF FMS 9

Introduction - matrix formulation - mathematical programming formulation - graph formulation - knowledge based system for group technology - economic justification of FMS - application of possibility distributions in FMS systems justification.

UNIT V APPLICATIONS OF FMS AND FACTORY OF THE FUTURE 9

FMS application in machining, sheet metal fabrication, prismatic component production - aerospace application - FMS development towards factories of the future - artificial intelligence and expert systems in FMS - design philosophy and characteristics for future.

COURSE OUTCOMES:

CO1. Ability to perform Planning, Scheduling and control of FMS

112

CO2. Demonstrate the software requirements to control the FMS and select a software from various alternatives

perform CO3.Can simulation **FMS** and also specify **Database** а scheme for FMS

CO4. Can classify the parts into part families using group technology

CO's-PO's & PSO's MAPPING

CO's			PO's										PS	O's	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		2										2		1	2
2		1			2								2		
3	3				2								3		2
4	2	2			3							2		2	
5	3	3										2			2
AVg.	2.6	2			2.3							2	2.5	1.5	2

TEXT BOOK:

1. Jha.N.K., "Handbook of flexible manufacturing systems", Academic Press Inc., 1991.

REFERENCES:

CIE341

- 1. Groover M.P., "Automation, production systems and computer integrated manufacturing", Prentice Hall of India Pvt., New Delhi, 2007.
- 2. Kalpakjian S., "Manufacturing Engineering and Technology", Addison-Wesley Publishsing Co..2013.
- 3. Radhakrishnan P. and Subramanyan S., "CAD/CAM/CIM", Wiley Eastern Ltd., New Age International Ltd., 1994.

COURSE OBJECTIVES:

LEAN AND AGILE MANUFACTURING

C Т

- To introduce the lean manufacturing andidentifythe waste.
- To study the various tools for lean manufacturing (LM).
- To apply the above tools to implement LM system in an organization.
- To provide knowledge on perfect value creation process that has zero waste.
- To apply the lean manufacturing tools and techniques through case studies.

INTRODUCTION TO LEAN MANUFACTURING UNIT I

Introduction to Lean-Definition, Purpose, features of Lean, tops evenwastes, Need for Lean, Elements of Lean Manufacturing.

UNIT II LEAN MANUFACTURING TOOLS AND METHODOLOGIES

9

Lean manufacturing Tools - 5S principles - Total Productive Maintenance - Pillars of TPM-Total quality management – Principles and implementation.

UNIT III JUST IN TIME MANUFACTURING, VSM

9

Introduction - Elements of JIT - Uniform production rate - Kanban system - Small lot size -Quick, inexpensive set-up - Continuous improvement. Value stream mapping - Procedure and principles.

AGILE PRODUCTION SYSTEM AND PRACTICES **UNIT IV**

Agile production system - the task aligned organization - agile manufacturing production

system – production planning and control, quality assurance, purchasing, maintenance, overview of production support, business operation, engineering, human resource, finance and accounting. Agile practices - Agile practice for product development – manufacturing agile practice – understanding the value of investing in people, removing inappropriate fear from the shop floor – not scarifying agility for perfectionism

UNIT V MANAGEMENT IN THE AGILE ORGANISATION

9

Old management styles, role of manager in an agile organization – vision champion, team leader, coach, business analyzer, supporting the new culture – performance appraisal systems, reward and recognition systems, organizational measurement, organizational learning processes.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of this course, the students will be able to:

CO1: Identify the waste in various manufacturing process.

CO2: Understanding principles of cellular manufacturing, JIT and TPM

CO3: Reduce the manufacturing time by applying concepts of TQM, 5S and

VSM.

CO4: get knowledgeonsixsigmaapproach

CO5: get knowledge on applying theleanmanufacturingtools andtechniques

CO's-PO's & PSO's MAPPING

CO's			PO's										PS	O's	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3		3								1	2	2		3
2	2		2		3									3	
3	3	2	3										2		
4	3	2	3		2								1		2
5														2	
AVg.	2.7	2	2.7		2.5						1	2	2.5	2.5	2.5

- 1. Ronald G. Askin and Jeffrey B. Goldberg Design and Analysis of Lean Production Systems, John Wiley & Sons, 2003
- 2. Rother M. and Shook J, 'Learning to See: Value Stream Mapping to Add Value and Eliminate Muda', Lean Enterprise Institute, Brookline, MA,1999.
- 3. Mikell P. Groover, 'Automation, Production Systems and CIM, 2002.
- 4. Lonnie Wilson, How to implement lean manufacturing, MG Graw Hill, 2015.
- 5. Pascal Dennis, Lean Production Simplified- CRC press, 2007.
- 6. Micheal I George, David Rowlands, Mark Price, John Mazy, Lean Six Sigma, MC-Graw Hill, 2005.

COURSE OBJECTIVES:

- Define the basic concepts of scheduling theory.
- Illustrate the application of single machine scheduling algorithms.
- Transfer knowledge in parallel machine scheduling algorithms.
- Teach the concept of flow shop scheduling and its algorithm.
- Describe the use of algorithms for job shop scheduling algorithms.

UNIT I SCHEDULING THEORY

9

Scheduling background - Scheduling function - Sequencing - Measures of performance - Scheduling theorems - Pure sequencing model assumptions.

UNIT II SINGLE MACHINE SCHEDULING

9

Hogdson's algorithm – Smith's application – Wilkerson-Irwin algorithm – Neighborhood search technique – Dynamic programming approach – Branch and Bound algorithm – Non simultaneous arrivals – Dependent job problems – Sequence dependent set up times.

UNIT III PARALLEL MACHINE SCHEDULING

9

Preemptive jobs: McNaughton's algorithm – Non pre-emptive jobs – Heuristic procedures – Minimizing weighted mean flow time: H1 & Hm heuristics – Dependent jobs: Hu's algorithm– Muntz Coffman algorithm.

UNIT IV FLOW SHOP SCHEDULING

9

Characteristics – Johnson's algorithm – Extension of Johnson's rule – Campbell Dudek Smith algorithm – Palmer's method -Gupta's algorithm – Start lag, Sop lag – Mitten's algorithm –Ignall Schrage algorithm – Despatch index heuristic. ..

UNIT V JOB SHOP SCHEDULING

9

Characteristics – Graphical tools – Jackson's algorithm – Feasible, Semi-active and active schedules – Single pass approach – Non delay schedule – Priority dispatching rules – Heuristic schedule generation – Open shop scheduling- Meta heuristics in scheduling

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: Able to understand fundamental concepts of scheduling theory.

CO2: Students will be able to solve single machine sequencing problems with an objective to minimize mean flow time or mean tardiness.

CO3: Students will be able to design a parallel machine schedule which can minimize mean flow time, or makespan.

CO4: Students will be able to determine an optimal schedule for a flow shop.

CO5: Students will be able to solve complex job shop problems, design and evaluate various feasible job shop schedules.

CO's-PO's & PSO's MAPPING

CO's			PO's	}									PS	O's	
CO S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	2	3						2	2		3	1
2	3	3	2	3	2						2	1	2	2	3
3	3	3	2	3	2						2	1	2		
4	3	2	3	2	3						2	1			
5	3	2	3	3	2						2	2		3	
AVg.	3	2.6	2.6	2.6	2.4						2	1.4	2	2.6	2

TEXT BOOK:

1. Kenneth R.Baker, "Introduction to Sequencing and Scheduling", John Wiley & Sons, New York, 2000.

REFERENCE:

1. Kenneth R.Baker, Dan Trietsch, "Principles of sequencing and scheduling", John Wiley & Sons, New York, 2013.

CIE343 MODELLING OF MANUFACTURING SYSTEMS L T P C 3 0 0 3

COURSE OBJECTIVES:

 To introduce the students different models used to describe the manufacturing systems and use of them for effective operations of manufacturingindustries.

UNIT I INTRODUCTION

9

Manufacturing systems types and concepts, manufacturing automation, performance measures types, classification and uses of manufacturing system models FMS planning and scheduling – Part selection and loadingproblems.

UNIT II FOCUSSED FACTORIES

9

Focused flow lines – Work cells- work centers, Group technology, General serial systems – Analysis of paced and unpaced lines, system effectiveness, impact of random processing times

UNIT III MARKOVMODELS

9

Stochastic processes in manufacturing, Markov chain models – DTMC and CTMC, steady state analysis, Transient Analysis of Manufacturing Systems

UNIT IV QUEUING MODELS OF MANUFACTURING

9

Basic queuing models, Queuing networks in manufacturing – Jackson and Gordon Newell, product form solution

UNIT V PETRINET MODEL

q

TOTAL: 45 PERIODS

Preliminary Definitions, Transition firing and reachability, Representational power, Properties of Petri Nets. Stochastic Petri Nets.

COURSE OUTCOMES:

CO1 .Can evaluate a given automated manufacturing system based on performance

CO2. Can apply group technology concepts to form Machine cells

CO3. Can model the Assembly line using Markov, Queuing and Petri Net model

CO4. Can analyze and model production lines using Markov, Queuing and Petri Net model

CO's-PO's & PSO's MAPPING

CO's			PO's	;									PS	O's	
CO S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1			3	1											
2			1	2	2								2		2
3	3		3		2										
4	3		2	3	3									2	
5	2		2	3	3										
AVg.	2.6		2.2	1.7	2.5								2	2	2

REFERENCES:

- 1. Ronald G Askin, "Modelingand AnalysisofManufacturing systems", Wiley & sons, 1993.
- 2. Viswanadham and Narahari, "Performance modeling of automated manufacturing systems", PHI, 1998
- 3. Buzacot and Shantikumar, "Queueing networks in Manufacturing", Wiley Sons, 2000.
- 4. Reisig W, "System Design Using Petrinets", Springer, 2000.
- 5. Raouf A. and Daya B.M., "Flexible manufacturing systems: recent development", Elsevier Science, 1995.
- 6. Ohno T., "Toyota production system: beyond large-scale production", Productivity Press (India) Pvt. Ltd.,1992.

CIE344

ADVANCED OPTIMIZATION TECHNIQUES

L T P C 3 0 0 3

COURSE OBJECTIVES:

- Learn to solve integer programming problems
- To know how to solve the Dynamic programming problems
- Learn to solve non linear programming problems with un constrained optimization problems
- Understand to solve non-linear programming problems using KKT conditions, quadraticand separable programming
- To create awareness of Meta heuristic algorithms.

UNIT I INTEGER PROGRAMMING

9

Branch and Bound technique –cutting plane algorithm method - Travelling Salesman problem - Traveling Salesman Problem - Branch and Bound Algorithms for TSP - Heuristics for TSP - Chinese Postman Problem - Vehicle Routing Problem

UNIT II DYNAMIC PROGRAMMING

9

Characteristics of Dynamic Programming Problems - Deterministic Dynamic Programming - Forward and Backward recursive recursion - selected dynamic programming application - investment model - inventory model - replacement model - reliability model - stage coach problem.

UNIT III NONLINEAR PROGRAMMING - I

9

Types of Nonlinear Programming Problems - One-Variable Unconstrained Optimization - Multivariable Unconstrained Optimization -

UNIT IV NONLINEAR PROGRAMMING – II

q

The Karush-Kuhn-Tucker (KKT) Conditions for Constrained Optimization - Quadratic Programming - Separable Programming - Convex Programming - Nonconvex Programming

UNIT V NON-TRADITIONAL OPTIMIZATION

9

Overview of Genetic algorithms, Simulated Annealing, neural network based optimization. Particle Swarm optimization, Ant Colony Optimization, Optimization of Fuzzy Systems.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: Know how to solve integer programming problems

CO2: Able to solve Dynamic programming problems

CO3: Familiar in solving unconstrained non-linear optimization problems

CO4: Familiar in solving constrained liner optimization problems

CO5: Know how to solve non-linear optimization problems using Meta heuristic algorithms

CO's-PO's & PSO's MAPPING

CO's			PO	's									PS	O's	
CO S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2		2	3								2		
2	3	2		2	3								2		1
3	3	2		2	3								2		
4	3	2		2	3									1	
5	3	2		2	3									1	
AVg.	3	2		2	3								2	1	1

REFERENCES:

- 1. Fredrick S.Hillier and G.J.Liberman, "Introduction to Operations Research", McGraw Hill Inc.1995.
- 2. Kalymanoy Deb, "Optimization for Engineering Design", PHI, 2003
- 3. Christos H. Papadimitriou, Kenneth Steiglitz, Combinatorial Optimization, PHI 2006
- 4. Ravindran Phillips –Solberg, "Operations Research Principles and Practice", John WileyIndia, 2006.
- 5. Singiresu S.Rao, "Engineering optimization Theory and practices", John Wiley and Sons,1996.

ME3592

METROLOGY AND MEASUREMENTS

L T P (3 0 0 3

COURSE OBJECTIVES

- 1 To learn basic concepts of the metrology and importance of measurements.
- 2 To teach measurement of linear and angular dimensions assembly and transmission elements.
- 3 To study the tolerance analysis in manufacturing.
- 4 To develop the fundamentals of GD & T and surface metrology.
- 5 To provide the knowledge of the advanced measurements for quality control in manufacturing industries.

UNIT – I BASICS OF METROLOGY

q

Measurement – Need, Process, Role in quality control; Factors affecting measurement - SWIPE; Errors in Measurements – Types – Control – Measurement uncertainty – Types, Estimation, Problems on Estimation

of Uncertainty, Statistical analysis of measurement data, Measurement system analysis, Calibration of measuring instruments, Principle of air gauging- ISO standards.

UNIT – II MEASUREMENT OF LINEAR, ANGULAR DIMENSIONS, ASSEMBLY AND 9 TRANSMISSION ELEMENTS

Linear Measuring Instruments – Vernier caliper, Micrometer, Vernier height gauge, Depth Micrometer, Bore gauge, Telescoping gauge; Gauge blocks – Use and precautions, Comparators – Working and advantages; Opto-mechanical measurements using measuring microscope and Profile projector - Angular measuring instruments – Bevel protractor, Clinometer, Angle gauges, Precision level, Sine bar, Autocollimator, Angle dekkor, Alignment telescope. Measurement of Screw threads - Single element measurements – Pitch Diameter, Lead, Pitch. Measurement of Gears – purpose – Analytical measurement – Runout, Pitch variation, Tooth profile, Tooth thickness, Lead – Functional checking – Rolling gear test.

UNIT – III TOLERANCE ANALYSIS

9

Tolerancing–Interchangeability, Selective assembly, Tolerance representation, Terminology, Limits and Fits, Problems (using tables IS919); Design of Limit gauges, Problems. Tolerance analysis in manufacturing, Process capability, tolerance stackup, tolerance charting.

UNIT – IV METROLOGY OF SURFACES

9

Fundamentals of GD & T- Conventional vs Geometric tolerance, Datums, Inspection of geometric deviations like straightness, flatness, roundness deviations; Simple problems – Measurement of Surface finish – Functionality of surfaces, Parameters, Comparative, Stylus based and Optical Measurement techniques, Filters, Introduction to 3D surface metrology- Parameters.

UNIT - V ADVANCES IN METROLOGY

Q

Lasers in metrology - Advantages of lasers - Laser scan micrometers; Laser interferometers - Applications - Straightness, Alignment; Ball bar tests, Computer Aided Metrology - Basic concept of CMM - Types of CMM - Constructional features - Probes - Accessories - Software - Applications - Multi-sensor CMMs.

Machine Vision - Basic concepts of Machine Vision System - Elements - Applications - On-line and inprocess monitoring in production - Computed tomography - White light Scanners.

TOTAL: 45 PERIODS

OUTCOMES: At the end of the course the students would be able to

- 1. Discuss the concepts of measurements to apply in various metrological instruments.
- 2. Apply the principle and applications of linear and angular measuring instruments, assembly and transmission elements.
- 3. Apply the tolerance symbols and tolerance analysis for industrial applications.
- 4. Apply the principles and methods of form and surface metrology.
- 5. Apply the advances in measurements for quality control in manufacturing Industries.

TEXT BOOKS:

- 1. Dotson Connie, "Dimensional Metrology", Cengage Learning, First edition, 2012.
- 2. Mark Curtis, Francis T. Farago, "Handbook of Dimensional Measurement", Industrial Press, Fifth edition, 2013.

- AmmarGrous, J "Applied Metrology for Manufacturing Engineering", Wiley-ISTE, 2011.
- 2. Galyer, J.F.W. Charles Reginald Shotbolt, "Metrology for Engineers", Cengage Learning EMEA; 5th revised edition, 1990.
- 3. National Physical LaboratoryGuideNo. 40, No. 41, No. 42, No. 43, No. 80, No. 118, No. 130, No. 131. http://www.npl.co.uk.
- 4. Raghavendra N.V. and Krishnamurthy. L., Engineering Metrology and Measurements, Oxford University Press, 2013.
- 5. Venkateshan, S. P., "Mechanical Measurements", Second edition, John Wiley &Sons, 2015.

						Р	0			_				PSO	_
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	2	2					1			1	3	2	1
2	3	2	2	2					1			1	3	2	1
3	3	2	2	2					1			1	3	2	1
4	3	2	2	2					1			1	3	2	1
5	3	2	2	2					1			1	3	2	1
					Lo	ow (1)	; N	ledium	າ (2) ;	Hi	gh (3)				

CIE345

QUALITY ASSURANCE AND AUDITING

1 PC 3 0 0 3

COURSE OBJECTIVES:

- To understand the objectives and Importance of Quality Management.
- To analyze the phases of audit and audit plan.
- To learn about the role of Information Technology in Quality improvement.
- To prepare the formal report.

UNIT I INTRODUCTION

9

History of Quality – objectives and Importance of Quality Management – Contributions of Quality Gurus - Quality Information System – Strategy Development and Deployment – Need for a Quality approach to strategy – Definition of Quality and its types – Distinction between product quality and service quality

UNIT II QUALITY IMPROVEMENT TECHNIQUES

9

Continuous process improvement - The Juran Trilogy - Improvement strategies - The PDSA Cycle - Kaizen - Six- Sigma - Bench Marking - Cost of Quality - Quality function Deployment - The role of Information Technology in Quality improvement

UNIT III INTRODUCTION

9

Brief history of auditing – General model of auditing – The compliance audit – Performance audit – Product audits – Process audits – System audits – Audit defined – Management principles

UNIT IV AUDIT PROGRAM MANAGER AND PREPARATION

9

Accountability – Resources for audit program – Phases of audit – The audit team – Second rule of auditing – Authority – Requirements – Understand the process – Audit Plan – Evaluate documents

UNIT V PERFORMANCE AND REPORTING

9

Opening meeting – Gather the facts – Tracing – Interviews – Interview Techniques – Perceptions – Team meetings – Daily briefings – Onward – Report Characteristics – Pain and pleasure – Findings – Preparing the finding sheets – Recommendations – Exit meeting – Formal report – Report distribution - Closure phase – Remedial action – Corrective action – Corrective action response – Adequacy of the response – Records – An Example Procedure

- the process approach – Auditing process-based Quality Management System – Audit program management – The process of Auditing – Audit reporting phase – Audit closure phase

COURSE OUTCOMES:

CO1: Distinguish between the product quality and service quality.

CO2: Analyze the model of auditing.

CO3: valuate the documents for audit plan

CO4: Analyze the Corrective action response and adequacy of the response

CO5: Apply the process of auditing

REFERENCES

- 1. Daniel Galin, —Software Quality Assurance from Theory to ImplementationII, Pearson Education, 2009
- 2. Yogesh Singh, "Software Testing", Cambridge University Press, 2012
- 3. AdityaMathur, —Foundations of Software Testingll, Pearson Education, 2008
- 4. Ron Patton, —Software Testingl , Second Edition, Pearson Education, 2007
- 5.SrinivasanDesikan, Gopalaswamy Ramesh, —Software Testing Principles and PracticesII, Pearson Education, 2006

MAPPING OF COS AND POS:

CO's			PO'	'S									PS	O's	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	1	1		2	2								2	
2	2	3	3			2								2	
3	3		2											3	3
4	3		3											2	3
5	3	2	3		3	2								3	
AVg.	2.4	2.3	2.4		2.5	2								2.4	3

CIE346

MAINTENANCE ENGINEERING

L T P C 3 0 0 3

COURSE OBJECTIVES:

The main learning objective of this course is to prepare the students for:

- Explaining the fundamental concept and principles of industrial safety
- · Applying the principles of maintenance engineering.
- Analyzing the wear and its reduction.
- Evaluating faults in various tools, equipments and machines.
- Applying periodic maintenance procedures in preventive maintenance

UNIT I INDUSTRIAL SAFETY

9

Accident, causes, types, results and control, mechanical and electrical hazards, types, causes, and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, washrooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods

UNIT II MAINTENANCE ENGINEERING

9

Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types, and applications of

tools used for maintenance, Maintenance cost & its relation with replacement economy, the Service life of the equipment.

UNIT III WEAR AND CORROSION AND THEIR PREVENTION

9

Wear- types, causes, effects, wear reduction methods, lubricants-types, and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle, and factors affecting the corrosion. Types of corrosion, corrosion prevention methods

UNIT IV FAULT TRACING

9

Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault-finding activities, shown as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment like i. Any one machine tool, ii. Pump iii. Air compressor, iv. The internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

UNIT V PERIODIC AND PREVENTIVE MAINTENANCE

q

Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities, and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedures for periodic and preventive maintenance of i. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets the Program and schedule of preventive maintenance of mechanical and electrical equipment, Advantages of preventive maintenance. Repair cycle concept and importance.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

CO1: Explain the fundamental concept and principles of industrial safety

CO2: Apply the principles of maintenance engineering.

CO3: Analyze the wear and its reduction.

CO4: Evaluate faults in various tools, equipments and machines.

CO5: Apply periodic maintenance procedures in preventive maintenance.

- 1. Edward Ghali, V. S. Sastri, M. Elboujdaini, Corrosion Prevention and Protection: Practical Solutions, John Wiley & Sons, 2007.
- 2. Garg, HP, Maintenance Engineering, S. Chand Publishing.
- 3. J Maiti, Pradip Kumar Ray, Industrial Safety Management: 21st Century Perspectives of Asia, Springer, 2017.
- 4. R. Keith Mobley, Maintenance Fundamentals, Elsevier, 2011.
- 5. W. E. Vesely, F. F. Goldberg, Fault Tree Handbook, Create space Independent Pub, 2014

CO's			PO'	S									PS	O's	
CO S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	1	1	2	3	1	2	2	1	1	2		2	3
2	2	2	3	2	3	2	2	1	2	2	2	3	2		
3	2	1	2	2	1	3	2	2	2	1	2	2	2		3
4	1	2	2	2	2	3	2	1	2	2	2	2		3	
5	3	2	2	2	3	2	2	2	2	2	2	2			2
AVg.	2	1.6	2	1.8	2.2	2	1.8	1.7	2	1.6	1.8	2.2	2	2.5	2.7

DESIGN OF EXPERIMENTS

L T P C 3 0 0 3

COURSE OBJECTIVES:

- Impart knowledge on principles and steps in designing a statistically designed experiment.
- Build foundation in analysing the data in single factor experiments and to perform post hoc tests.
- Provide knowledge on analysing the data in factorial experiments.
- Educate on analysing the data analysis in special experimental designs and Response Surface Methods.
- Impart knowledge in designing and analysing the data in Taguchi's Design of Experiments to improve Process/Product quality.

UNIT I FUNDAMENTALS OF EXPERIMENTAL DESIGNS

9

Hypothesis testing – single mean, two means, dependant/ correlated samples – confidence intervals, Experimentation – need, Conventional test strategies, F-test, terminology, basic principles of design, steps in experimentation – choice of sample size – Normal and half normal probability plot – simple linear and multiple linear regression, Analysis of variance.

UNIT II SINGLE FACTOR EXPERIMENTS

9

Completely Randomized Design- effect of coding the observations- model adequacy checking - estimation of model parameters, residuals analysis- treatment comparison methods-Duncan's multiple range test, Newman-Keuel's test, Fisher's LSD test, Tukey's test- Testing using contrasts Randomized Block Design – Latin Square Design- Graeco Latin Square Design – Applications.

UNIT III FACTORIAL DESIGNS

9

Main and Interaction effects - Two and three factor full factorial designs- Fixed effects and random effects model - Rule for sum of squares and Expected Mean Squares- 2 K Design with two and three factors- Yate's Algorithm- fitting regression model- Randomized Block Factorial Design.

UNIT IV SPECIAL FACTORIAL DESIGNS

9

Blocking and Confounding in 2^K Designs- blocking in replicated design- 2^K Factorial Design in two blocks- Complete and partial confounding- Confounding 2^K Design in four blocks – Two-level Fractional Factorial Designs- Construction of one-half and one-quarter fraction of 2^K Design- Introduction to Response Surface Methods

UNIT V TAGUCHI METHODS

9

Design of experiments using Orthogonal Arrays, Data analysis from Orthogonal Experiments Response Graph Method, ANOVA- Attribute data analysis- Robust design- noise factors, Signal to Noise ratios, Inner/outer OA design- case studies.

COURSE OUTCOMES:

CO1: Understand the fundamental principles of Design of Experiments.

CO2: Analyze data in the single factor experiments.

CO3: Analyze data in the multifactor experiments.

CO4: Understand the special experimental designs & Response Surface Methods.

CO5: Apply Taguchi based approach to evaluate quality.

TEXT BOOKS

- 1. Krishnaiah, K. and Shahabudeen, P. Applied Design of Experiments and Taguchi Methods, PHI learning private Ltd., 2012.
- 2. Montgomery, D.C., Design and Analysis of Experiment, Minitab Manual, John Wiley and Sons, Seventh edition, 2010

CO's			PO ³	's									PS	O's	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	2										3		
2	3	3	3	2										3	
3	3	3	2	3	3				3						
4	3	2	3	3	3										3
5	2	3	2	2	3		3		3				2		
AVg.	2.8	2.8	2.4	2.5	3		3		3				2.5	3	3

CIE348

RELIABILITY ENGINEERING

L T P C 3 0 0 3

COURSE OBJECTIVES:

- Impart knowledge in reliability concepts
- Facilitate students in filling the life data into theoretical distribution.
- Educate the students in reliability evaluation of various configuration.
- Impart knowledge in reliability monitoring methods.
- Analyze effectively various techniques to improve reliability of the system.

UNIT I RELIABILITY CONCEPT

9

Reliability definition –, Reliability parameters- f(t), F(t,) and R(t) functions- Measures of central tendency Bathbub curve – A priori and posterior probabilities of failure – Component mortality - Useful life.

UNIT II LIFE DATA ANALYSIS

9

Data classification – Non parametric methods: Ungrouped, Grouped, Complete, Censored data – Time to failure distributions - Survival graphs – Probability plotting: Exponential, Weibull - Goodness of fit tests – -Bartlett's test, KS test, chi-square test.

UNIT III RELIABILITY ESTIMATION

(

Series parallel configurations – Parallel redundancy – m/n system – Complex systems: RBD approach – Baye's method – Minimal path and cut sets - Fault Tree analysis – Standby system.

UNIT IV RELIABILITY MANAGEMENT

9

Reliability testing: Failure terminated test – Time terminated test – Upper and lower MTBFs – Sequential Testing – Reliability growth monitoring – Reliability allocation.

UNIT V RELIABILITY IMPROVEMENT

9

Analysis of downtime – Repair time distribution – Maintainability prediction – Measures of maintainability – Availability definitions – System Availability – Replacement decisions – Economic life.

COURSE OUTCOMES:

CO1: Understand the basic concepts of reliability engineering

CO2: Effectively analyze various non parametric methods and failure distributions

CO3: Conduct reliability assessment and failure analysis on any complex systems

CO4: Effectively design and analyze reliability monitoring techniques

CO5: Analyze various techniques to improve reliability of the system

TEXT BOOK:

1. Charles E.Ebeling, "An Introduction to Reliability and Maintainability Engineering", TMH,12th edition 2017

REFERENCE:

1. Roy Billington and Ronald N. Allan, "Reliability Evaluation of Engineering Systems", Springer, 2007

CO's			PO	's									PS	O's	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	3	2		1										3
2	3	3	3	3								2			3
3	3	3	3		3										3
4	3	2	2	3	3							2	2		
5	3	3	2	2											
AVg.	2.8	3	2.4	2.6	2.5							2	2		3

CIE349

ADVANCED MEASUREMENT SYSTEM

L T P C 3 0 0 3

COURSE OBJECTIVES:

- Describe the principles of engineering tribology.
- Summarize the metrology of surface finish.
- Relate computer in measurement / industrial inspection systems.
- Contrast the corrosion types and its testing methods.
- Describe the principle and standards of destructive and non destructive testing.

UNIT I FRICTION AND WEAR MEASUREMENT

9

Introduction to tribology - friction, wear, and lubrication. Wear- types - adhesive, abrasive, fatigue etc. Lubrication: Methods of lubrication; industrial lubricants and their grades. Measurement of friction - tribometer - parameters - different testing methods. Wear debris and surface analysis, wear reduction methods.

UNIT II SURFACE FINISH &VIDEO MEASUREMENT SYSTEMS

9

Surface texture, surface roughness parameter, ideal surface roughness. Factors affecting surface roughness. Roughness measurement equipments - Tomlinson's surface meter, Taylor- Hobson surface meter, grades of roughness, specifications Video Measurement Systems: introduction and principle, measurement of kerf taper angle, delamination factor, edge slope and corner accuracy.

UNIT III COMPUTER-AIDED METROLOGY

9

Computer-Aided Metrology - principles and interfacing, soft metrology - application of lasers in precision measurements - laser interface, laser scanners, Coordinate Measurement Machine (CMM), types of CMM & applications. CMM software, scanning, reverse engineers applications, performance evaluation of coordinate measuring machines, possible sources of error in CMM.

UNIT IV MEASUREMENT OF CORROSION

9

Introduction – types- definition and principles. Purpose of corrosion testing - corrosion testing equipment – susceptibility tests for intergranular corrosion - Stress corrosion test. Salt spray test humidity and porosity tests accelerated weathering tests. ASTM standards for corrosion testing.

UNIT V DESTRUCTIVE AND NON DESTRUCTIVE TESTING

9

Destructive Testing: Principle, standards, and procedure for the measurement - hardness, tensile strength, fatigue, creep, impact, fracture toughness. Non Destructive Testing: Principle, standards and procedure Dye penetrant test, Magnetic Particle Test, Radiographic test, Eddy current test, Ultrasonic test.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of the course the students will be able to learn about:

CO1: The principles of engineering tribology and the procedures for performing tribological tests.

CO2: The fundamentals of metrology of surface finish.

CO3: The applications of computer in measurement/inspection system.

CO4: The various types of corrosion, effects and testing methods.

CO5: The principles and procedure of destructive and non destructive testing

- 1. Beckwith T. G., Marangoni R. D., and Lienhard J. H., "Mechanical Measurements," 6th Edition, Pearson Higher Education, ISBN: 0132296071, 2007.
- 2. Foster, P. Field (2007), The Mechanical Testing of Metals and Alloys, Read Books, ISBN 978-1406734799.
- 3. Gupta I.C., "Engineering Metrology", DhanpatRai Publications, 2005.
- 4. Jain R.K., "Engineering Metrology," Khanna Publishers, ISBN: 817409153X, 20th Reprint, 2014.

CO's			PO	's									PS	0's	
CO S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3			3	3								3	3	3
2	3	3	3	2											
3	3			3	3										
4	3	2	2	3									3	3	3
5	3	2	3	3	3										
AVg.	3	2.6	2.6	2.8	3								3	3	3

COURSE OBJECTIVES:

- Explain the basics of Lean and Six Sigma.
- Teach the need and the process of integrating Lean and Six sigma.
- Summarize to identify and select the resources required for LSS Projects and selection of projects including Team building.
- Teach the DMAIC process and study the various tools for undertaking LSS projects.
- Illustrate to institutionalize the LSS efforts

UNIT I INTRODUCTION TO LEAN AND SIX SIGMA

9

Introduction to Lean- Definition, Purpose, Features of Lean; Top seven wastes, need for Lean management, the philosophy of lean management, Creating a lean enterprise, Elements of Lean, Lean principles, the lean metric, Hidden time traps. Introduction to quality, Definition of six sigma, origin of six sigma, Six sigma concept and Critical success factors for six sigma.

UNIT II INTEGRATION OF LEAN AND SIX SIGMA

9

Evolution of lean six sigma, the synergy of Lean and six sigma, Definition of lean six sigma, the principles of lean six sigma, Scope for lean six sigma, Features of lean six sigma. The laws of lean six sigma, Key elements of LSS, the LSS model and the benefits of lean six sigma. Initiation - Top management commitment – Infrastructure and deployment planning, Process focus, organizational structures, Measures – Rewards and recognition, Infrastructure tools, the structure of transforming event and Launch preparation.

UNIT III PROJECT SELECTION AND TEAM BUILDING

9

Resource and project selection, Selection of Black belts, Training of Black belts and Champions, Identification of potential projects, top down (Balanced score card) and Bottom up approach – Methods of selecting projects – Benefit/Effort graph, Process mapping, value stream mapping, Predicting and improving team performance, Nine team roles and Team leadership.

UNIT IV THE DMAIC PROCESS AND TOOLS

9

The DMAIC process – Toll gate reviews; The DMAIC tools; Define tools – Project definition form, SIPOC diagram; Measure tools – Process mapping, Lead time/cycle time, Cause and Effect matrix, Idea – generating and organizing tools – Brainstorming, Nominal group technique and Multi-voting; Data collection and accuracy tools- Check sheet, Gauge R&R; Understanding and eliminating variation- run charts; Analyze tools - Scatter plots, ANOVA, Regression analysis, Time trap analysis; Improve tools – Mistake proofing, Set up time reduction (SMED) and the pull system; Control tools – statistical process control.

UNIT V INSTITUTIONALIZING AND DESIGN FOR LSS

9

Institutionalizing lean six sigma – improving design velocity, creating cycle time base line, valuing projects, gating the projects, reducing product line complexity, Design for lean six sigma, QFD, Theory of Inventive Problem solving (TRIZ), Robust design; Case study presentations

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: The students will be able to understand what is Lean and Six sigma and their importance in the globalized competitive world.

CO2: The students will be able to understand the importance of integrating Lean and Six sigma and also the process of their integration.

- CO3: The students will be able to plan the Resources required to undertake the LSS projects and also acquire how to select the suitable projects and the teams.
- CO4: The students will be able apply DMAIC methodology to execute LSS projects and in this regard they will be acquainted with various LSS tools.
- CO5: The students will be able to understand the process of institutionalizing the LSS effort and also understand the Design for LSS.

REFERENCES:

- 1. James P. Womack, Daniel T. Jones, Lean Thinking, Free press business, 2003.
- 2. Michael L. George, Lean Six Sigma, McGraw-Hill., 2002.
- 3. Ronald G.Askin and Jeffrey B.Goldberg, Design and Analysis of Lean Production Systems, John Wiley &Sons., 2003.
- 4. Salman Taghizadegan, Essentials of Lean Six Sigma, Elsevier, 2010

CO's			PO	'S									PS	O's	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		3										3		3	
2						3				3		3	2	2	2
3					3				3				2	3	2
4	3				3		3	2			3	3	2		
5			3	2		3	3	3							
AVg.	3	3	3	2	3	3	3	2.5	3	3	3	3	2	2.6	2

CIE351

MULTIVARIATE DATA ANALYSIS

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To impart knowledge on the Regression
- To understand the concepts of multivariate method
- To apply the knowledge of factor analysis
- To apply the knowledge of discriminant analysis
- To apply the knowledge of cluster analysis

UNIT I MULTIVARIATE METHODS

9

An overview of Multivariate methods, Multivariate Normal distribution, Eigen values and Eigen vectors.

UNIT II REGRESSION

9

Simple Regression and Correlation – Estimation using the regression line, Correlation analysis, Multiple regression and Correlation analysis – Finding the Multiple Regression equation, Modelling techniques, Making inferences about the population parameters.

UNIT III FACTOR ANALYSIS

S

Principal Component Analysis – COURSE OBJECTIVES, Estimation of principal components, Testing for the independence of variables, Factor analysis model – Factor analysis equations and solution – Exploratory Factor analysis – Confirmatory Factor analysis.

UNIT IV DISCRIMINANT ANALYSIS

9

Discriminant analysis – Discrimination for two multivariate normal Populations – Discriminant functions – Structured Equation Modelling (SEM).

Cluster analysis – Clustering methods, Multivariate analysis of Variance

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: Can apply the multivariate, analysis techniques for statistical analysis

CO2: Can apply the regression, analysis techniques for statistical analysis

CO3: Can apply the factor, analysis techniques for statistical analysis

CO4: Can apply the discriminent analysis techniques for statistical analysis

CO5: Can apply the cluster analysis techniques for statistical analysis

REFERENCES:

- 1. Dallas E Johnson, Applied Multivariate methods for data analysis, Duxbury Press (2010).
- 2. Joseph F. Hair, Jr. William C. Black Barry J. Babin, Rolph E. Anderson, Multivariate Data Analysis, Pearson Edition, (2010).
- 3. Richard I Levin, Statistics for Management, PHI (2011).

CO's			PO'	S									PS	O's	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3												2	2	3
2	3														2
3		3											3		
4		2		3										3	
5		2			3								3		2
AVg.	3	2.3		3	3								2.6	2.5	2.3

VERTICAL 4: SOFTWARE QUALITY ENGINEERING

CIE365 DATABASE MANAGEMENT SYSTEM

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To understand the fundamentals of data models and conceptualize and depict a database system using ER diagram.
- To make a study of SQL and relational database design.
- To know about data storage techniques and query processing.
- To impart knowledge in transaction processing, concurrency control techniques and recovery procedures.

UNIT I RELATIONAL MODEL

9

Data Model – Types of Data Models: – Entity Relationship Model – Relational Data Model – Mapping Entity Relationship Model to Relational Model – Structured Query Language – Database Normalization – Transaction Management.

UNIT II PARALLEL AND DISTRIBUTED DATABASES

9

Centralized and Client-Server Architectures – Parallel Systems – Distributed Systems – Parallel Databases – I/O Parallelism – Inter- and Intra-Query Parallelism – Inter- and Intra-Operation Parallelism – Distributed Database Concepts: – Distributed Data Storage – Distributed Transactions – Commit Protocols – Concurrency Control – Distributed Query Processing.

UNIT III XML DATABASES XML

9

Databases: XML Data Model – DTD – XML Schema – XML Querying – Web Databases – Open Database Connectivity.

UNIT IV MULTIMEDIA DATABASES

9

Multidimensional Data Structures – Image Databases – Text / Document Databases – Video Databases – Audio Databases – Multimedia Database Design.

UNIT V CURRENT ISSUES ACTIVE

9

Databases – Deductive Databases – Data Warehousing – Data Mining – Database Tuning – Database Security.

TOTAL:45 PERIODS

COURSE OUTCOMES:

- Upon Completion of the course, the students will be able to Understand the basic concepts of the database and data models.
- Design a database using ER diagrams and map ER into Relations and normalize the relations
- Acquire the knowledge of query evaluation to monitor the performance of the DBMS.
- Develop a simple database applications using normalization.
- Acquire the knowledge about different special purpose databases and to critique how they differ from traditional database systems.

- 1. R. Elmasri, S.B. Navathe, —Fundamentals of Database SystemsII, Addison-Wesley, 2011.
- 2. Thomas Cannolly and Carolyn Begg, —Database Systems, A Practical Approach to Design, Implementation and Management II, Third Edition, Pearson Education, 2007.
- 3. Henry F Korth, Abraham Silberschatz, S. Sudharshan, —Database System Conceptsll, Fifth Edition, McGraw Hill, 2006.
- 4. C.J.Date, A.Kannan and S.Swamynathan, IIAn Introduction to Database SystemsII, Eighth Edition, Pearson Education, 2006.
- 5. V.S.Subramanian, —Principles of Multimedia Database SystemsII, Harcourt India Pvt. Ltd., 2001.

CO's			PO's	}									PS	O's	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	2		2										
2		3												2	
3	3	2												2	
4	3	2												2	
5		2	2	2	2										
AVg.	3	2.2	2	2	2									2	

COURSE OBJECTIVES:

- To understand and apply the algorithm analysis techniques.
- To critically analyze the efficiency of alternative algorithmic solutions for the same problem.
- To understand different algorithm design techniques.
- To understand the limitations of Algorithmic power.

UNIT I ANALYSING ALGORITHMS

9

The Role of Algorithms in Computing - Growth of Functions – Recurrences - The Substitution Method - The Recurrence Tree Method - The Master Method - Probabilistic Analysis and Randomized Algorithms – Amortized Analysis – Aggregate Analysis – Accounting Method

UNIT II DIVIDE AND CONQUER & GREEDY DESIGN STRATEGIES 9

Analysis of Quick Sort, Merge Sort – Quick Sort Randomized Version – Sorting in Linear Time - Lower Bounds for Sorting - Selection in Expected Linear Time - Selection in Worst case Linear Time – Greedy Algorithms - Elements of Greedy Strategy - Huffman Code, Dijkstra's Shortest Path Algorithm.

UNIT III DYNAMIC PROGRAMMING AND OTHER DESIGN STRATEGIES

9

Dynamic Programming – Matrix Chain Multiplication - Elements of Dynamic programming – Longest Common Sequences – Warshall's and Floyds Algorithm – Transitive Closure - All Pairs Shortest Path Algorithm – Analysis – Backtracking – Graph Coloring Problem - Branch and Bound Strategy - Knapsack Problem.

UNIT IV FLOW NETWORKS AND STRING MATCHING

9

Flow Networks – Ford Fulkerson Method - String Matching - Naive String Matching Algorithm – Knuth Morris Pratt Algorithm - Analysis.

UNIT V NP PROBLEMS

c

NP-Completeness – Polynomial Time Verification – Theory of Reducibility - Circuit Satisfiability – NP - Completeness Proofs – NP Complete Problems: Vertex Cover, Hamiltonian Cycle and Traveling Salesman Problems – Approximation Algorithms – Approximation Algorithms to Vertex - Cover and Traveling Salesman Problems.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

- Design algorithms for various computing problems.
- Analyze the time and space complexity of algorithms.
- Critically analyze the different algorithm design techniques for a given problem.
- Modify existing algorithms to improve efficiency.
- Analyze the concepts of NP problems

- 1. C.M. Krishna, Kang G. Shin, —Real-Time SystemsII, McGraw-Hill International Editions,1st edition 2017
- 2. Philip.A.Laplante, —Real Time System Design and Analysisll, Prentice Hall of India, 3rd Edition, 2004.
- 3. Rajib Mall, —Real-time systems: theory and practicell, Pearson Education, 2009.

3. Allen Burns, Andy Wellings, —Real Time Systems and Programming Languagesll, Pearson Education, 2003.

CO's			PO's										PS	O's	
CUS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3				3							1	2		
2					3							3			3
3					3							1	2		
4			3		3							3		3	
5			3									3			
Avg	3		3		3							2.4	1.5	2.5	3

CIE353

SOFTWARE COST ESTIMATION

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To understand the Objectives and Importance of Software cost estimation.
- To analyze the requirement engineering techniques and models.
- To provide a good understanding of size estimation and measurements.
- To evaluate the tool for database estimation and algebraic model
- To provide a good understanding of software estimation

UNIT I INTRODUCTION

9

Introduction to software requirements& Estimation, Software engineering, software lifecycle-software project-management activities-requirements engineering-software estimation

UNIT II REQUIREMENT ENGINEERING

9

Requirement elicitation-techniques-analysis-models-documentation-review-management

UNIT III SIZE ESTIMATION

9

Tutorial &sizing-FAP-MARKII FPA-Full FP-FP Extensions-computations-functional size measurement-LOC estimation-conversion between size measures-sizing for conversion and maintenance.

UNIT IV EFFORT SCHEDULE AND COST ESTIMATION

10

Estimation Factors-Rayleigh curve-effort and schedule estimation- Mark II FP estimation-COCOMO II-COCOMO 81-algebrastic models-analogy-bottom-up cost- validity software estimates.

UNIT V SOFTWARE ESTIMATES

9

Database &tools for estimation- database for requirements-estimation-model calibration-desirable features in software estimation tools-some software estimation tools

TOTAL: 45 PERIODS

COURSE OUTCOMES:

- Understanding the Importance of Software cost estimation.
- Analyzing the requirement engineering techniques and models.
- Providing a good understanding of size estimation and measurements.
- Evaluating the tool for database estimation and algebraic model
- Providing a good understanding of software estimation

TEXT BOOKS:

- 1. Dutta BN, Estimating & costing. 28th edition 2016
- 2. Rangwala SC Estimating & Costing, AnandCharotar Book Stall 17th edition 2017.

CO's			PO'	S									PS	O's	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2	1	1									2		3
2	2	2	3	3	3								2	3	
3	2	3	3	3										3	
4	2	2													2
5	3	3	3	3									2		
AVg.	2.2	2.4	2.5	2.5	3										

CIE354

AGILE SOFTWARE DEVELOPMENT

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To provide students with a theoretical as well as practical understanding of agile software development practices and how small teams can apply them to create highquality software.
- To provide a good understanding of software design and a set of software technologies and APIs.
- To do a detailed examination and demonstration of Agile development and testing techniques.
- To understand the benefits and pitfalls of working in an Agile team.
- To understand Agile development and testing.

UNIT I AGILE METHODOLOGY

9

Theories for Agile management – agile software development – traditional model vs. agile model - classification of agile methods – agile manifesto and principles – agile project management – agile team interactions – ethics in agile teams - agility in design, testing – agile documentations – agile drivers, capabilities and values.

UNIT II AGILE PROCESSES

9

Lean production - SCRUM, Crystal, Feature Driven Development, Adaptive Software Development, and Extreme Programming: Method overview – lifecycle – work products, roles and practices.

UNIT III AGILITY AND KNOWLEDGE MANAGEMENT

9

Agile information systems – agile decision making - Earl's schools of KM – institutional knowledge evolution cycle – development, acquisition, refinement, distribution, deployment, leveraging – KM in software engineering – managing software knowledge – challenges of migrating to agile methodologies – agile knowledge sharing – role of story-cards – Story-card Maturity Model (SMM).

UNIT IV AGILITY AND REQUIREMENTS ENGINEERING

9

Impact of agile processes in RE – current agile practices – variance – overview of RE using agile – managing unstable requirements – requirements elicitation – agile requirements abstraction model – requirements management in agile environment, agile requirements

prioritization – agile requirements modeling and generation – concurrency in agile requirements generation.

UNIT V AGILITY AND QUALITY ASSURANCE

9

Agile Interaction Design - Agile product development - Agile Metrics - Feature Driven Development (FDD) - Financial and Production Metrics in FDD - Agile approach to Quality Assurance - Test Driven Development - Pair programming: Issues and Challenges - Agile approach to Global Software Development.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of the course, the students will be able to:

CO1: Realize the importance of interacting with business stakeholders in determining the requirements for a software system

CO2: Perform iterative software development processes: how to plan them, how to execute them.

CO3: Point out the impact of social aspects on software development success.

CO4: Develop techniques and tools for improving team collaboration and software quality. Perform Software process improvement as an ongoing task for development teams

CO5: Show how agile approaches can be scaled up to the enterprise level.

TEXT BOOKS:

- 1. David J. Anderson and Eli Schragenheim, —Agile Management for Software Engineering: Applying the Theory of Constraints for Business Resultsll, Prentice Hall, 2003.
- 2. Hazza and Dubinsky, —Agile Software Engineering, Series: Undergraduate Topics in Computer Sciencell, Springer, 2009.

- 1. Dingsoyr, Torgeir, Dyba, Tore, Moe, Nils Brede (Eds.), —Agile Software Development, Current Research and Future Directions , Springer-Verlag Berlin Heidelberg, 2010
- 2. David J. Anderson; Eli Schragenheim, —Agile Management for Software Engineering: Applying the Theory of Constraints for Business Results ||, Prentice Hall, 2003
- 3. Hazza & Dubinsky, —Agile Software Engineering, Series: Undergraduate Topics in Computer Sciencell, Springer, VIII edition, 2009
- 4. Craig Larman, —Agile and Iterative Development: A manager_s Guidell, Addison-Wesley, 2004
- 5. Kevin C. Desouza, —Agile information systems: conceptualization, construction, and management ||, Butterworth-Heinemann, 2007.

CO's			PO	's									PS	O's	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	2	2				3					2		2
2	2	3	3	3				2						3	
3	2	2	2	2				3						2	
4	2	2	2	3				2					3		3
5	3	2	2	2				2							
AVg.	2.4	2.2	2.2	2.4				2.4					2.5	2.5	2.5

COURSE OBJECTIVES:

- Studying the basic principles and concepts in software quality
- Effectively designing, analyzing and developing the software engineering activities
- Gaining knowledge on software quality assurance and risk management
- Analyze the principles and applications of software quality management tools
- Gaining knowledge about software quality standards

UNIT I INTRODUCTION

9

Software Projects, Projects Planning, Process models, Waterfall, RAD, V, Spiral, Incremental, Prototyping, Agile, Project Tracking.

UNIT II SOFTWARE METRICS

9

Goal, Question, Metric (GQM) model, Product Quality metrics, In-process Quality metrics, Metrics for software maintenance and testing, Complexity Metrics.

UNIT III SOFTWARE PROJECT ESTIMATION

9

Effort and Cost Estimation - Expert Judgment, LOC, Function Points, Extended Function Points, Feature Points, Object Points, COCOMO-81, COCOMO-II; Risk Management.

UNIT IV SOFTWARE QUALITY

q

Quality Management Systems, Software Quality Models- FURPS, McCalls Models, Applying seven basic quality tools in software development, Measuring Quality, Gilb, CoQUAMO, Lean software development.

UNIT V SOFTWARE QUALITY ASSURANCE

9

Software Reliability Models-Rayleigh model, Weibull model; Defect Removal Effectiveness; Quality standards- ISO 9000 models and standards for process improvement, ISO/IEC 9126-1 to 9126-4, SQuaRE, ISO/IEC 25000, ISO/IEC 25010, CMM, PCMM, CMMI, SPICE.

TOTAL:45 PERIODS

COURSE OUTCOMES:

- CO1 understand the basic principles and concepts in software quality
- CO2 effectively design, analyze and develop software engineering activities
- CO3 gain knowledge on software quality assurance and risk management
- CO4 understand the principles and applications of software quality management tools
- CO5 gain knowledge about software quality standards

TEXT BOOKS

- 1. Roger S. Pressman, Software Engineering a Practioners Approach, McGraw Hill International Edition, New Delhi, 7th Edition, 2010.
- 2. Stephen Kan, Metrics and Models in Software Quality Engineering, Pearson Education Asia, 8th Impression 2009.

- 1. Walker Royce, Software Project Management A unified framework, PearsonEducation Asia, New Delhi, 2000.
- 2. Alan Gillies, Software Quality Theory and Management, Thomson Learning, 2011.

CO's			PO's	3									PS	O's	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	2	2	2								2	2	2
2	2	2	3	3	3								2	3	3
3	3	2	2	2	2								2	3	3
4	3	2	2	2	3								2	1	3
5	3	2	2	2	1										
AVg.	2.8	2	2.2	2.2	2.2								2	2.3	2.7

CIE356 SOFTWARE TESTING

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To learn the criteria for test cases.
- To learn the design of test cases.
- To understand test management and test automation techniques.
- To apply test metrics and measurements.

UNIT I INTRODUCTION

9

to Software Quality - Challenges - objectives - Quality Factors - Components of SQA - Contract Review - Development and Quality Plans - SQA Components in Project Life Cycle - SQA Defect Removal Policies - Reviews.

UNIT II TESTING METHODOLOGIES

9

Basics of Software Testing – Test Generation from Requirements – Finite State Models – Combinatorial Designs - Test Selection, Minimization and Prioritization for Regression Testing – Test Adequacy, Assessment and Enhancement.

UNIT III TEST STRATEGIES

9

Testing Strategies – White Box and Black Box Approach – Integration Testing – System and Acceptance Testing – Performance Testing – Regression Testing - Internationalization Testing – Ad-hoc Testing – Website Testing – Usability Testing – Accessibility Testing.

UNIT IV TEST AUTOMATION AND MANAGEMENT

9

Test plan – Management – Execution and Reporting – Software Test Automation – Automated Testing tools - Hierarchical Models of Software Quality – Configuration Management – Documentation Control.

UNIT V SQA IN PROJECT MANAGEMENT

9

Project progress control – costs – quality management standards – project process standards – management and its role in SQA – SQA unit.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: Design test cases suitable for a software development for different domains.

CO2: Identify suitable tests to be carried out.

CO3: Prepare test planning based on the document.

CO4: Document test plans and test cases designed.

CO5: Use automatic testing tools. CO6: Develop and validate a test plan

TEXT BOOKS:

- 1. SrinivasanDesikan and Gopalaswamy Ramesh, —Software Testing Principles and PracticesII, Pearson Education, 2006.
- 2. Ron Patton, —Software Testingll, Second Edition, Sams Publishing, Pearson Education, 2007. AU Library.com

REFERENCES

- 1. Daniel Galin, —Software Quality Assurance from Theory to ImplementationII, Pearson Education, 2009
- 2. Yogesh Singh, "Software Testing", Cambridge University Press, 2012
- 3. AdityaMathur, —Foundations of Software Testingll, Pearson Education, 2008
- 4. Ron Patton, —Software Testingl , Second Edition, Pearson Education, 2007
- 5. SrinivasanDesikan, Gopalaswamy Ramesh, —Software Testing Principles and PracticesII, Pearson Education, 2006
- 6. Alan C Gillies, —Software Quality Theory and Managementll, Cengage Learning, Second Edition. 2003.
- 7. Robert Furtell, Donald Shafer, and Linda Shafer, "Quality Software Project Management", Pearson Education Asia. 2002.

	JOIT LUC		PO'										DC	O's	
CO's			PU	>									FO	US	
00 3	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2			2	2							2	2		2
2	2		2	3	3			3						3	
3	2			2	3			2						2	
4	3		2	2	3							2			
5	3		3	3	3								2		2
AVg.	2.5		2.3	2.4	2.8			2.5				2	2	2.5	2

CIE357 SOFTWARE METRICS AND QUALITY AUDIT

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To help the students gain understanding of the modeling and testing reliability metrices.
- To provide the knowledge in the prediction of software reliability.
- To enable them to analyze and understand the measurements in software engineering.
- To analyze the phases of audit and audit plan.
- To prepare the formal report.

UNIT I INTRODUCTION TO SOFTWARE RELIABILITY

9

Basic Concepts – Failure and Faults – Environment – Availability –Modeling –uses – requirements reliability metrics – design & code reliability metrics – testing reliability metrics

UNIT II SOFTWARE RELIABILITY MODELING CONCEPT

9

General Model Characteristic – Historical Development of models – Model Classification scheme – Markovian models – General concepts – General Poisson Type Models – Binomial Type Models – Poisson Type models – Fault reduction factor for Poisson Type models.

UNIT III COMPARISON OF SOFTWARE RELIABILITY MODELS

Comparison Criteria – Failure Data – Comparison of Predictive Validity of Model Groups – Recommended Models – Comparison of Time Domains – Calendar Time Modeling – Limiting Resource Concept – Resource Usage model – Resource Utilization – Calendar Time Estimation and confidence Intervals

UNIT IV INTRODUCTION TO AUDIT

Q

Brief history of auditing – General model of auditing – The compliance audit – Performance audit – Product audits – Process audits – System audits – Audit defined – Management principles

UNIT V AUDIT PROGRAM MANAGER AND PREPARATION

9

Accountability – Resources for audit program – Phases of audit – The audit team – Second rule of auditing – Authority – Requirements – Understand the process – Audit Plan – Evaluate documents

COURSE OBJECTIVES

CO1: Helping the students gain understanding of the modeling and testing reliability metrices.

CO2: Providing the knowledge in the prediction of software reliability.

CO3: Enable them to analyze and understand the measurements in software engineering.

CO4: Analyze the phases of audit and audit plan.

CO5: Preparing the formal report

REFERENCES:

- 1. Norman Fenton, James Bieman, —Software Metrics: A Rigorous and Practical Approachll, 3rd edition, CRC Press, 2015
- 2. John D. Musa, Anthony Iannino, KazuhiraOkumoto, —Software Reliability Measurement, Prediction, Application, Series in Software Engineering and Technologyll, McGraw Hill, 1987
- 3. John D. Musa, —Software Reliability Engineeringll, Tata McGraw Hill, 1999

CO's			PO	'S									PS	O's	
CO S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2	1	1	2	2						2	3		
2	2	3	2		3	2			3						3
3	3	3	3	3	3	2			3				2	2	
4		3	3	3		2									
5	3	3	3	3	2	2						2	2		
AVg.	2.5	2.6	2.4	2.5	2.5	2			3			2	2.3	2	3

CIE358

BUSINESS DATA ANALYTICS

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To understand the basics of business analytics and its life cycle
- To gain knowledge about fundamental business analytics.
- To learn modeling for uncertainty and statistical inference.
- To understand analytics using Hadoop and Map Reduce frameworks.
- To acquire insight on other analytical frameworks.

UNIT I OVERVIEW OF BUSINESS ANALYTICS

9

Introduction – Drivers for Business Analytics – Applications of Business Analytics: Marketing and Sales, Human Resource, Healthcare, Product Design, Service Design, Customer Service and Support – Skills Required for a Business Analyst – Framework for Business Analytics Life Cycle for Business Analytics Process.

UNIT II ESSENTIALS OF BUSINESS ANALYTICS

Q

Descriptive Statistics – Using Data – Types of Data – Data Distribution Metrics: Frequency, Mean, Median, Mode, Range, Variance, Standard Deviation, Percentile, Quartile, z-Score, Covariance, Correlation – Data Visualization: Tables, Charts, Line Charts, Bar and Column Chart, Bubble Chart, Heat Map – Data Dashboards.

UNIT III MODELING UNCERTAINTY AND STATISTICAL INFERENCE

۵

Modeling Uncertainty: Events and Probabilities – Conditional Probability – Random Variables – Discrete Probability Distributions – Continuous Probability Distribution – Statistical Inference: Data Sampling – Selecting a Sample – Point Estimation – Sampling Distributions – Interval Estimation – Hypothesis Testing.

UNIT IV ANALYTICS USING HADOOP AND MAPREDUCEFRAMEWORK 9

Introducing Hadoop – RDBMS versus Hadoop – Hadoop Overview – HDFS (Hadoop Distributed File System) – Processing Data with Hadoop – Introduction to MapReduce – Features of MapReduce – Algorithms Using Map-Reduce: Matrix-Vector Multiplication, Relational Algebra Operations, Grouping, and Aggregation – Extensions to MapReduce

UNIT V OTHER DATA ANALYTICAL FRAMEWORKS

9

Overview of Application Development Languages for Hadoop – PigLatin – Hive – Hive Query Language (HQL) – Introduction to Pentaho, JAQL – Introduction to Apache: Sqoop, Drill, and Spark, Cloudera Impala – Introduction to NoSQL Databases – Hbase and MongoDB.

COURSE OUTCOMES:

On completion of the course, the student will be able to:

CO1: Identify the real world business problems and model with analytical solutions.

CO2: Solve analytical problem with relevant mathematics background knowledge.

CO3: Convert any real world decision making problem to hypothesis and apply suitable statistical testing.

CO4: Write and Demonstrate simple applications involving analytics using Hadoop and MapReduce

CO5: Use open source frameworks for modeling and storing data.

REFERENCES:

1. Jiawei Han, MichelineKamber, —Data Mining: Concepts and TechniquesII, Morgan Kaufmann, Third edition, 2011.

CO's			PO	's									PS	O's	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	2	3	3							2		3	2
2	3	3	2	3	2										
3	2	2		3	3								3		
4	2	2		2	2							2			3
5	3	2	2	2	2										
AVg.	2.6	2.4	2	2.6	2.4							2	3	3	2.5

COURSE OBJECTIVES:

- 1. To understand the concepts of measurement technology.
- 2. To learn the various sensors used to measure various physical parameters.
- 3. To learn the fundamentals of signal conditioning, data acquisition and communication systems used in mechatronics system development
- 4. To learn about the optical, pressure and temperature sensor
- 5. To understand the signal conditioning and DAQ systems

UNIT I INTRODUCTION

9

Basics of Measurement – Classification of errors – Error analysis – Static and dynamic characteristics of transducers – Performance measures of sensors – Classification of sensors – Sensor calibration techniques – Sensor Output Signal Types.

UNIT II MOTION, PROXIMITY AND RANGING SENSORS

9

Motion Sensors – Potentiometers, Resolver, Encoders – Optical, Magnetic, Inductive, Capacitive, LVDT – RVDT – Synchro – Microsyn, Accelerometer – GPS, Bluetooth, Range Sensors – RF beacons, Ultrasonic Ranging, Reflective beacons, Laser Range Sensor (LIDAR).

UNIT III FORCE, MAGNETIC AND HEADING SENSORS

8

Strain Gage, Load Cell, Magnetic Sensors –types, principle, requirement and advantages: Magneto resistive – Hall Effect – Current sensor Heading Sensors – Compass, Gyroscope, Inclinometers.

UNIT IV OPTICAL, PRESSURE AND TEMPERATURE SENSORS

10

Photo conductive cell, photo voltaic, Photo resistive, LDR – Fiber optic sensors – Pressure – Diaphragm, Bellows, Piezoelectric – Tactile sensors, Temperature – IC, Thermistor, RTD, Thermocouple. Acoustic Sensors – flow and level measurement, Radiation Sensors - Smart Sensors - Film sensor, MEMS & Nano Sensors, LASER sensors.

UNIT V SIGNAL CONDITIONING AND DAQ SYSTEMS

9

Amplification – Filtering – Sample and Hold circuits – Data Acquisition: Single channel and multi-channel data acquisition – Data logging - applications - Automobile, Aerospace, Home appliances, Manufacturing, Environmental monitoring.

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon successful completion of the course, students should be able to:

- CO1: Recognize with various calibration techniques and signal types for sensors.
- CO2: Describe the working principle and characteristics of force, magnetic, heading, pressure and temperature, smart and other sensors and transducers.
- CO3: Apply the various sensors and transducers in various applications
- CO4: Select the appropriate sensor for different applications.
- CO5: Acquire the signals from different sensors using Data acquisition systems.

TEXT BOOKS:

- 1. Ernest O Doebelin, "Measurement Systems Applications and Design", Tata McGraw-Hill, 2009.
- 2. Sawney A K and Puneet Sawney, "A Course in Mechanical Measurements and Instrumentation and Control", Dhanpat Rai & Co, 12th edition New Delhi, 2013.

REFERENCES

- 1. C. Sujatha ... Dyer, S.A., Survey of Instrumentation and Measurement, John Wiley & Sons, Canada, 2001.
- 2. Hans Kurt Tönshoff (Editor), Ichiro, "Sensors in Manufacturing" Volume 1, Wiley-VCH April 2001.
- 3. John Turner and Martyn Hill, "Instrumentation for Engineers and Scientists", Oxford Science Publications. 1999.
- 4. Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2011.
- 5. Richard Zurawski, "Industrial Communication Technology Handbook" 2nd edition, CRC Press, 2015.

			Ma	appin	g of	COs	with	POs	and	I PSOs	5				
COs/POs &							POs						PS	Os	
PSOs	1	2	3	4	12	1	2	3							
CO1	3	2 1 2 2 1												1	3
CO2	3	2 1 2 2 1												1	3
CO3	3	2 1 2 2 1 1 2 1 1											2	1	3
CO4	3	2	1	3	2	1						1	2	1	3
CO5	3	2	1	3	2	1						1	2	1	3
CO/PO & PSO Average	3	2	1	2.2	2	1						1	2	1	3
		•	1 –	Sligh	it, 2 -	- Mod	derat	e, 3 -	- Sub	stantia	al	•	•	•	•

MR3392 ELECTRICAL DRIVES AND ACTUATORS L T P C 3 0 0 3

COURSE OBJECTIVES:

- 1. To familiarize a relay and power semiconductor devices
- 2. To get a knowledge on drive characteristics
- 3. To obtain the knowledge on DC motors and drives.
- 4. To obtain the knowledge on AC motors and drives.
- 5. To obtain the knowledge on Stepper and Servo motor.

UNIT – I RELAY AND POWER SEMI-CONDUCTOR DEVICES

9

Study of Switching Devices – Relay and Types, Switching characteristics -BJT, SCR, TRIAC, GTO, MOSFET, IGBT and IGCT-: SCR, MOSFET and IGBT - Triggering and commutation circuit - Introduction to Driver and snubber circuits

UNIT – II DRIVE CHARACTERISTICS

9

Electric drive – Equations governing motor load dynamics – steady state stability – multi quadrant Dynamics: acceleration, deceleration, torque, and Direction starting & stopping – Selection of motor.

UNIT - III DC MOTORS AND DRIVES

9

DC Servomotor - Types of PMDC & BLDC motors - principle of operation- emf and torque equations - characteristics and control - Drives- H bridge - Single and Three Phases - 4 quadrant operation - Applications

UNIT – IV AC MOTORS AND DRIVES

9

Introduction – Induction motor drives – Speed control of 3-phase induction motor – Stator voltage control – Stator frequency control – Stator voltage and frequency control – Stator current control – Static rotor resistance control – Slip power recovery control.

UNIT – V STEPPER AND SERVO MOTOR

a

Stepper Motor: Classifications- Construction and Principle of Operation – Modes of Excitation-Drive System-Logic Sequencer - Applications. Servo Mechanism – DC Servo motor-AC Servo motor – Applications.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of the course, the student able to:

- CO 1: Recognize the principles and working of relays, drives and motors.
- CO 2: Explain the working and characteristics of various drives and motors.
- CO 3: Apply the solid state switching circuits to operate various types of Motors and Drivers
- CO 4: Interpret the performance of Motors and Drives.
- CO 5: Suggest the Motors and Drivers for given applications.

Mapping of COs with POs and PSOs															
COs/Pos&P	POs												PS		
SOs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1	1	2	1							1	1		3
CO2	3	1	2	2	1							1	1		3
CO3	3	1	2	2	1							1	1		3
CO4	3	1	1	2	2							1	1		3
CO5	3	1	1	2	2							1	1		3
CO/PO &	3	1	1.4	2	1.4							1	1		3
PSO Average															
1 – Slight, 2 – Moderate, 3 – Substantial															

TEXT BOOKS:

- 1. Bimbhra B.S., "Power Electronics", 5th Edition, Kanna Publishers, New Delhi, 2012.
- 2. Mehta V.K. & Rohit Mehta, "Principles of Electrical Machines", 2nd Edition, S.Chand& Co. Ltd., New Delhi, 2016.

- 1. Gobal K. Dubey, "Fundamentals of Electrical Drives", 2nd Edition, Narosal Publishing House, New Delhi, 2001.
- 2. Theraja B.L. &Theraja A.K., "A Text Book of Electrical Technology", 2nd Edition, S.Chand& Co. Ltd., New Delhi, 2012.
- 3. Singh M.D. &Kanchandhani K.B., "Power Electronics", McGraw Hill, New Delhi, 2007

COURSE OBJECTIVES:

- 1. To familiarize the architecture and fundamental units of microcontroller.
- 2. To know the microcontroller programming methodology and to acquire the interfacing skills and data exchange methods using various communication protocols.
- 3. To design the interface circuit and programming of I/O devices, sensors and actuators.
- 4. To understand ARM processor architecture and its functions to meet out the computational and interface needs of growing mechatronic systems.
- 5. To acquaint the knowledge of real time embedded operating system for advanced system developments.

UNIT I INTRODUCTION TO MICROCONTROLLER

6

Fundamentals Functions of ALU - Microprocessor - Microcontrollers - CISC and RISC - Types Microcontroller - 8051 Family - Architecture - Features and Specifications - Memory Organization - Instruction Sets - Addressing Modes.

UNIT II PROGRAMMING AND COMMUNICATION

6

Fundamentals of Assembly Language Programming – Instruction to Assembler – Compiler and IDE - C Programming for 8051 Microcontroller – Basic Arithmetic and Logical Programming - Timer and Counter - Interrupts – Interfacing and Programming of Serial Communication, I²C, SPI and CAN of 8051 Microcontroller – Bluetooth and WI-FI interfacing of 8051 Microcontroller.

UNIT III PERIPHERAL INTERFACING

6

I/O Programming – Interfacing of Memory, Key Board and Displays – Alphanumeric and Graphic, RTC, interfacing of ADC and DAC, Sensors - Relays - Solenoid Valve and Heater - Stepper Motors, DC Motors - PWM Programming – Closed Loop Control Programming of Servomotor – Traffic Light

UNIT IV ARM PROCESSOR

6

Introduction ARM 7 Processor - Internal Architecture – Modes of Operations – Register Set – Instruction Sets – ARM Thumb - Thumb State Registers – Pipelining – basic programming of ARM 7 - Applications.

UNIT V SINGLE BOARD COMPUTERS AND PROGRAMMING

6

System on Chip - Broadcom BCM2711 SoC - SBC architecture - Models and Languages - Embedded Design - Real Time Embedded Operating Systems - Real Time Programming Languages -- Python for Embedded Systems- GPIO Programming - Interfacing

TOTAL: 30 PERIODS

EMBEDDED SYSTEMS LAB

LIST OF EXPERIMENTS

- 1. Assembly Language Programming and Simulation of 8051.
- 2. Alphanumeric and Graphic LCD Interfacing using 8051 Microcontroller.
- 3. Input switches and keyboard interfacing of 8051.
- 4. Sensor Interfacing with ADC to 8051 and DAC & RTC Interfacing with 8051...
- 5. Timer, Counter and Interrupt Program Application for 8051.
- 6. Step Motor (Unipolar & Bipolar Motor) and PWM Servo Motor Control to Interfacing with 8051.
- 7. UART Serial and Parallel Port Programming of 8051.
- 8. I²C, SPI and CAN Programming of 8051.
- 9. Interfacing and Programming of Bluetooth and Wi-Fi with 8051

- 10. Programming of ARM Processor for Sensor Interface.
- 11. Stepper Motor and Servo Motor Control Using ARM Processor.
- 12. Serial Communication of ARM Processor with Computation Platform.
- 13. Wireless Communication of ARM Processor with Computation Platform.
- 14. GPIO Programming of Real Time Embedded Operating Systems.
- 15. IOT application using SBC.

(any 7 experiments)

TOTAL:30 PERIODS

COURSE OUTCOMES

Upon successful completion of the course, students should be able to:

- CO 1: Know the various functional units of microcontroller, processors and system-on-chip based on the features and specifications.
- CO 2: Recognize the role of each functional units in microcontroller, processors and systemon-chip based on the features and specifications.
- CO 3: Interface the sensors, actuators and other I/O's with microcontroller, processors and system on chip based interfacing
- CO 4: Design the circuit and write the programming microcontroller, processors and system on chip
- CO 5: Develop the applications using Embedded system.

TEXT BOOKS:

- 1. Frank Vahid and Tony Givagis, "Embedded System Design", 2011, Wiley.
- 2. Kenneth J. Aylala, "The 8051 Microcontroller, the Architecture and Programming Applications", 2003.

- 1. Muhammad Ali Mazidi and Janice GillispicMazdi, "The 8051 Microcontroller and Embedded Systems", Pearson Education, 2006.
- 2. Simon Monk, Programming the Raspberry Pi, Second Edition: Getting Started with Python McGraw Hill TAB; 2nd edition, 2015
- 3. James W. Stewart, "The 8051 Microcontroller Hardware, Software and Interfacing", Regents Prentice Hall, 2003.
- 4. John B. Peatman, "Design with Microcontrollers", McGraw Hill International, USA, 2005.

Mapping of COs with POs and PSOs																
COs/POs &		POs												PSOs		
PSOs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2	1	1	2	2						1	3	1	3	
CO2	3	2	1	1	2	2						1	3	1	3	
CO3	3	2	1	1	2	2						1	3	1	3	
CO4	3	2	1	1	2	2						1	3	1	3	
CO5	3	2	1	1	2	2						1	3	1	3	
CO/PO & PSO	3	2	1	1	2	2						1	3	1	3	
Average																
1 – Slight, 2 – Moderate, 3 – Substantial																

MR3691 ROBOTICS L T P C 3 0 0 3

COURSE OBJECTIVES:

- 1. To learn about basics of robots and their classifications
- 2. To understand the robot kinematics in various planar mechanisms
- 3. To learn about the concepts in robot dynamics
- 4. To understand the concepts in trajectory planning and programming
- 5. To know about the various applications of robots

UNIT – I BASICS OF ROBOTICS

Я

Introduction- Basic components of robot-Laws of robotics- classification of robot- robot architecture, work space-accuracy-resolution –repeatability of robot..

UNIT - II ROBOT KINMEATICS

11

Robot kinematics: Introduction- Matrix representation- rigid motion & homogeneous transformation- D-H, forward & inverse kinematics of 2DOF and 3 DOF planar and spatial mechanisms

UNIT - III ROBOT DYNAMICS

9

Introduction - Manipulator dynamics - Lagrange - Euler formulation - Newton - Euler formulation

UNIT – IV TRAJCTORY, PATH PLANNING AND PROGRAMMING

R

Trajectory Planning- Joint space and Cartesian space technique, Introduction to robot control, Robot programming and Languages- Introduction to ROS

UNIT – V ROBOT AND ROBOT APPLICATIONS

9

Sensors and Actuators for Robots, Power transmission systems, Rotary to rotary motion, Rotary to linear motion, Harmonics drives – gear system - belt drives. Robot end effectors & Grippers: Introduction- types & classification- Mechanical gripper- gripper force analysis- other types & special purpose grippers. Robot Applications: pick and place, manufacturing, automotive, medical, space and underwater.

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon completion of this course, the students can able to

CO1: State the basic concepts and terminologies of robots

CO2:Know the Procedures for Forward and Inverse Kinematics, Dynamics for Various Robots

CO3: Derive the Forward and Inverse Kinematics, Dynamics for Various Robots

CO4:Apply the various programming techniques in industrial applications

CO5: Analyze the use of various types of robots in different applications

			Ma	ppin	g of	COs	with	POs	and	PSOs					
COs/POs&P							POs						PSC)s	
SOs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	3	1	2							1	2	1	3
CO2	3	2 3 1 2 1 2 1 2 2													
CO3	3	2 3 1 2 1 2 1													
CO4	3	2	3	1	2							1	2	2	3
CO5	3	2	3	1	3							1	2	2	3
CO/PO &	3	2	3	1	2.							1	2	1.4	3
PSO Average					2										
			1 –	Sligh	nt, 2 -	- Mod	derate	e, 3 -	- Sub	stantia	ıl				

TEXT BOOKS:

- 1. John.J.Craig, "Introduction to Robotics: Mechanics & control", Pearson Publication, Fourth edition, 2018.
- 2. K.S.Fu, R.C.Gonzalez, C.S.G.Lee, "Robotics: Sensing, Vision & Intelligence", Tata McGraw-Hill Publication, First Edition, 1987.

REFERENCES:

- 1. M.P.Groover, M.Weiss ,R.N. Nagal, N.G.Odrey, "Industrial Robotics Technology, programming and Applications" Tata , McGraw-Hill Education Pvt Limited 2ndEdition, 2012
- 2. Jazar, "Theory of Applied Robotics: Kinematics, Dynamics and Control", Springer, 2ndEdition, 2010
- 3. S K Saha, Introduction to Robotics, Tata McGraw-Hill, ISBN: 9789332902800, Second Edition, 9789332902800
- 4. Sathya Ranjan Deb, "Robotics Technology & flexible Automation" Second edition, Tata McGraw-Hill Publication, 2009.

CMR338 SMART MOBILITY AND INTELLIGENT VEHICLES L T P C 3 0 0 3

COURSE OBJECTIVES:

The objectives of the course are:

- 1. To introduce students to the various technologies and systems used to implement smart mobility and intelligent vehicles.
- 2. To learn Basics of Radar Technology and Systems, Ultrasonic Sonar Systems, LIDAR Sensor Technology and Systems and other sensors for automobile vision system.
- 3. To learn Basic Control System Theory applied to Autonomous Automobiles.
- 4. To produce overall impact of automating like various driving functions, connecting the automobile to sources of information that assist with a task
- 5. To allow the automobile to make autonomous intelligent decisions concerning future actions of the vehicle that potentially impact the safety of the occupants through connected car & autonomous vehicle technology.

UNIT – I INTRODUCTION TO AUTOMATED, CONNECTED, AND INTELLIGENT 9 VEHICLES

Concept of Automotive Electronics, Electronics Overview, History & Evolution, Infotainment, Body, Chassis, and Powertrain Electronics, Introduction to Automated, Connected, and Intelligent Vehicles. Case studies: Automated, Connected, and Intelligent Vehicles

UNIT – II SENSOR TECHNOLOGY FOR SMART MOBILITY

Basics of Radar Technology and Systems, Ultrasonic Sonar Systems, Lidar Sensor Technology and Systems, Camera Technology, Night Vision Technology, Other Sensors, Use of Sensor Data Fusion, Integration of Sensor Data to On-Board Control Systems

UNIT – III CONNECTED AUTONOMOUS VEHICLE

Basic Control System Theory applied to Automobiles, Overview of the Operation of ECUs, Basic Cyber-Physical System Theory and Autonomous Vehicles, Role of Surroundings Sensing Systems and Autonomy, Role of Wireless Data Networks and Autonomy

9

UNIT – IV VEHICLE WIRELESS TECHNOLOGY & NETWORKING

Wireless System Block Diagram and Overview of Components, Transmission Systems – Modulation/Encoding, Receiver System Concepts— Demodulation/Decoding, Wireless Networking and Applications to Vehicle Autonomy, Basics of Computer Networking – the Internet of Things, Wireless Networking Fundamentals, Integration of Wireless Networking and On-Board Vehicle Networks

9

9

UNIT – V CONNECTED CAR & AUTONOMOUS VEHICLE TECHNOLOGY

Connectivity Fundamentals, Navigation and Other Applications, Vehicle-to-Vehicle Technology and Applications, Vehicle-to-Roadside and Vehicle-to-Infrastructure Applications, Autonomous Vehicles - Driverless Car Technology, Moral, Legal, Roadblock Issues, Technical Issues, Security Issues

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon successful completion of the course, students should be able to:

- CO1: Recognize the concept of cyber-physical control systems and their application to collision avoidance and autonomous vehicles
- CO2: Select the concept of remote sensing and the types of sensor technology needed to implement remote sensing
- CO3: Familiar with the concept of fully autonomous vehicles
- CO4: Apply the basic concepts of wireless communications and wireless data networks
- CO 5: Analyze the concept of the connected vehicle and its role in automated vehicles

			Мар	pin	g of	COs	witl	h PO	s an	d PSC)s				
COs/POs							PC)s					PS	SOs	
&PSOs	1	1 2 3 4 5 6 7 8 9 10 11 12													3
CO1	3	2	1	1		1						1	2	1	1
CO2	3	2	1	1		1						1	2	1	1
CO3	3	2	1	1		1						1	2	1	1
CO4	3	2	1	1		1						1	2	1	1
CO5	3	2	1	1		1						1	2	1	1
CO/PO & PSO Average	3	2	1	1		1						1	2	1	1
		1	- S	ligh	t, 2 -	– Mo	dera	te, 3	– Sı	ıbstan	tial	u.			ı

TEXT BOOKS

- 1. "Intelligent Transportation Systems and Connected and Automated Vehicles", 2016, Transportation Research Board
- 2. Radovan Miucic, "Connected Vehicles: Intelligent Transportation Systems", 2019, Springer

REFERENCES

1. Tom Denton, "Automobile Electrical and Electronic systems, Roult edge", Taylor & Francis Group, 5th Edition, 2018.

CME345 HAPTICS AND IMMERSIVE TECHNOLOGIES L T P C 3 0 0 3

COURSE OBJECTIVES

- 1 To learn various immersive technologies of VR, AR and MR.
- 2 To learn software related to immersive technologies.
- 3 To learn the concepts of developing AR applications.
- 4 To learn the concepts of developing VR and unreal engine.
- 5 To study the haptic perception and extended reality.

UNIT – I INTRODUCTION TO IMMERSIVE TECHNOLOGIES

9

Introduction on Virtual reality – Augmented reality – Mixed reality – Extended reality – VR Devices – AR Devices – Applications

UNIT – II SOFTWARE TOOLS

9

Intro to Unity – Unity editor workspace – Intro to C# and visual studio - Programming in Unity – Intro to Unreal Engine – UE4 Editor workspace – Intro to Blueprint programming – Programming in Ue4

UNIT – III BUILDING AR APPLICATION WITH UNITY

9

AR SDKs for unity and unreal engine – Working with SDKs for unity – Developing AR application in unity - Building AR application

UNIT – IV BUILDING VR APPLICATION WITH UNREAL ENGINE

9

VR SDKs for unity and unreal engine - Developing VR application in Ue4 - Building VR application

UNIT – V HAPTIC PERCEPTION AND EXTENDED REALITY

9

Extended Reality - Introduction to Haptics - Devices and possibilities - Custom Device development - Device Integration

TOTAL – 45 PERIODS

OUTCOMES: At the end of the course the students would be able to

- 1. Apply detailed knowledge about immersive technology
- 2. Gaining the knowledge of different types of Tools and Devices
- 3. Acquiring the knowledge about Unity and Unreal Engine
- 4. Explain the developing application in immersive technologies
- 5. Discuss about haptics in immersive technologies

TEXT BOOKS:

- Immersive Multimodal Interactive Presence, by Angelika Peer (Editor), Christos
 Giachritsis (Editor), Springer; 2012th edition (13 April 2014), ISBN-10 : 1447162137
- 2. XR Haptics, Implementation & Design Guidelines, by Eric Vezzoli, Chris Ullrich, Gijs den Butter, Rafal Pijewski, March 13, 2022

- 1. Practical Augmented Reality, by Steve Aukstakalnis, Addison-Wesley Professional; 1st edition (8 September 2016)
- 2. Augmented Reality Theory, Design and Development, by Chetankumar G Shetty.
- 3. Strategic Communication and AI, by Simon Moore, Roland Hübscher, Routledge; 1st edition (10 September 2021), ISBN-10: 0367627795
- 4. Immersive Analytics, by Kim Marriott, Falk Schreiber, Springer; 1st ed. 2018 edition (15 October 2018).
- 5. Immersive Analytics A Clear and Concise Reference, by Gerardus Blokdyk, 5STARCooks (5 September 2018).

						Р	0							PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2	2		2				1			1	1	2	2
2	2	2	2		2				1			1	1	2	2
3	2	2	2		2				1			1	1	2	2
4	2	2	2		2				1			1	1	2	2
5	2	2	2		2				1			1	1	2	2
				Lov	w (1) ;	М	edium	n (2) ;	Н	ligh (3	3)				

CRA332 DRONE TECHNOLOGIES L T

COURSE OBJECTIVES:

- 1. To understand the basics of drone concepts
- 2. To learn and understand the fundaments of design, fabrication and programming of drone
- 3. To impart the knowledge of an flying and operation of drone
- 4. To know about the various applications of drone
- 5. To understand the safety risks and guidelines of fly safely

UNIT – I INTRODUCTION TO DRONE TECHNOLOGY

g

C

Drone Concept - Vocabulary Terminology- History of drone - Types of current generation of drones based on their method of propulsion- Drone technology impact on the businesses- Drone business through entrepreneurship- Opportunities/applications for entrepreneurship and employability

UNIT – II DRONE DESIGN, FABRICATION AND PROGRAMMING

9

Classifications of the UAV -Overview of the main drone parts- Technical characteristics of the parts -Function of the component parts -Assembling a drone- The energy sources- Level of autonomy- Drones configurations -The methods of programming drone- Download program - Install program on computer- Running Programs- Multi rotor stabilization- Flight modes -Wi-Fi connection.

UNIT – III DRONE FLYING AND OPERATION

۵

Concept of operation for drone -Flight modes- Operate a small drone in a controlled environment-Drone controls Flight operations –management tool –Sensors-Onboard storage capacity -Removable storage devices- Linked mobile devices and applications

UNIT – IV DRONE COMMERCIAL APPLICATIONS

9

Choosing a drone based on the application -Drones in the insurance sector- Drones in delivering mail, parcels and other cargo- Drones in agriculture- Drones in inspection of transmission lines and power distribution -Drones in filming and panoramic picturing

UNIT – V FUTURE DRONES AND SAFETY

9

The safety risks- Guidelines to fly safely -Specific aviation regulation and standardization- Drone license- Miniaturization of drones- Increasing autonomy of drones -The use of drones in swarms

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon successful completion of the course, students should be able to:

CO1: Know about a various type of drone technology, drone fabrication and programming.

CO2: Execute the suitable operating procedures for functioning a drone

CO3: Select appropriate sensors and actuators for Drones

CO4: Develop a drone mechanism for specific applications

CO4: Createthe programs for various drones

CO-PO MAPPING:

			М	appiı	ng of	COs	with	POs	and	PSOs					
COs/Pos&PS							POs						PS	Os	
Os	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	3	1	3	2						1	2	1	3
CO2	1	2	3	1	3	2						1	2	1	3
CO3	1	2	3	1	2	1	3								
CO4	1	2	3	1	3	2						1	2	1	3
CO5	1	2	3	1	3	2						1	2	1	3
CO/PO & PSO Average	CO/PO & 1 2 3 1 3 2 1														3
			1 -	- Slig	ht, 2	– Mo	derate	e, 3 –	Sub	stantial					

TEXT BOOKS

- 1. Daniel Tal and John Altschuld, "Drone Technology in Architecture, Engineering and Construction: A Strategic Guide to Unmanned Aerial Vehicle Operation and Implementation", 2021 John Wiley & Sons, Inc.
- 2. Terry Kilby and Belinda Kilby, "Make:Getting Started with Drones ",Maker Media, Inc, 2016

REFERENCES

- 1. John Baichtal, "Building Your Own Drones: A Beginners' Guide to Drones, UAVs, and ROVs", Que Publishing, 2016
- 2. Zavrsnik, "Drones and Unmanned Aerial Systems: Legal and Social Implications for Security and Surveillance", Springer, 2018.

CME338 VALUE ENGINEERING L T P C 3 0 0 3

COURSE OBJECTIVES

- 1 To study the value engineering process and able to identify its functions within the process.
- 2 To determine the appropriate value engineering methodology for a given project and propose appropriate training to centralized and decentralized modes.
- 3 To learn various decision-making processes and cost evaluation models and apply them in appropriately in the product development life-cycle.
- 4 To explore in-depth understanding of various value engineering applications in human resources, manufacturing and marketing.
- 5 To demonstrate to implement value engineering solutions and propose to perfect them.

UNIT – I VALUE ENGINEERING BASICS

9

Origin of value engineering - Meaning of value engineering - Definition of value engineering and Value analysis- Value Management - Value Analysis Versus Value Engineering - Value Analysis versus Traditional cost reduction techniques - Types of Value function – Basic and Secondary functions - concept of cost and worth - creativity In Value Engineering - uses, applications, advantages and limitations of Value analysis.

UNIT – II VALUE ENGINEERING JOB PLAN AND PROCESS

9

Seven phases of job plan - FAST Diagramming as Value Engineering Tool - Behavioral and organizational aspects of Value Engineering - Ten principles of Value analysis - Benefits of Value Engineering.

UNIT – III VALUE ENGINEERING TECHNIQUES

9

Creativity - Brain storming - Gordon technique - Morphological Analysis - ABC Analysis - Probabilistic approach - Make or Buy decisions - Function cost worth analysis (FCWA) - Function Analysis System technique (FAST) - Break Even Analysis - Life cycle cost(LCC)

UNIT – IV WORKSHEETS AND GUIDELINES

Preparation of worksheets - general and information phase - Function Classification, relationship and summary - Meaningful costs - Cost analysis - idea listing and comparison - Feasibility ranking - Investigator phase, study summary - guidelines for writing value engineering proposal - Financial aspects - List cycle cost analysis - Oral presentation - Audit - Case studies and Discussion.

UNIT – V VERSATILITY OF VALUE ENGINEERING

9

Value engineering operation in maintenance and repair activities - value engineering in non hardware projects - Initiating a value engineering programme Introduction - training plan - career development for value engineering specialties.

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to

- 1. Estimate a product cost based on value engineering principles in terms of its values, functions and worthiness.
- 2. Discuss the product and articulate it in various phases of value engineering
- 3. Discuss and select appropriate methods, standards and apply them on value engineering project and propose appropriate training
- 4. Apply querying theory and FAST to prefect a value engineering project implementation.
- 5. Develop various case studies related to value engineering project implementation.

TEXT BOOKS:

- 1. Iyer. S.S., "Value Engineering", New Age International (P) Limited, 9th Edition, 2009 3Ed", , 2009.
- 2. Anil Kumar. and Mukhopadhyaya., "Value Engineering: Concepts Techniques and applications", SAGE Publications, 1st Edition, 2003.

- 1. Del L. Younker., "Value Engineering: analysis and methodology", CRC Press, 2003.
- 2. Richard Park., "Value Engineering A Plan for Invention", CRC Press, 1998.
- 3. Arthur E. Mudge., "Value Engineering: A systematic approach", McGraw Hill, 1989.
- 4. Alphonse Dell'Isola., "Value Engineering: Practical Applications...for Design, Construction, Maintenance and Operations", R.S. Means Company, 1997.
- 5. Lawrence D. Miles., "Techniques of Value Analysis and Engineering", Lawrence D. Miles Value Foundation, 3rd Edition, 2015.

СО							РО								PSO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1			1			1	2	1		3	1	1	2	1
2	1			1			1	2	1		3	1	1	2	1
3	1			1			1	2	1		3	1	1	2	1
4	1			1			1	2	1		3	1	1	2	1
5	1			1			1	2	1		3	1	1	2	1
				L	ow (1)); N	Лediur	n (2) ;	; Н	ligh (3))				

ADDITIVE MANUFACTURING

L T P C 2 0 2 3

COURSE OBJECTIVES:

- To introduce the development of Additive Manufacturing (AM), various business opportunities and applications
- To familiarize various software tools, processes and techniques to create physical objects that satisfy product development / prototyping requirements, using AM.
- To be acquainted with vat polymerization and direct energy deposition processes
- To be familiar with powder bed fusion and material extrusion processes.
- To gain knowledge on applications of binder jetting, material jetting and sheet lamination processes

UNIT I INTRODUCTION

6

Overview - Need - Development of Additive Manufacturing (AM) Technology: Rapid Prototyping-Rapid Tooling - Rapid Manufacturing - Additive Manufacturing. AM Process Chain- ASTM/ISO 52900 Classification - Benefits. Applications: Building Printing - Bio Printing - Food Printing-Electronics Printing. Business Opportunities and Future Directions - Case studies: Automobile, Aerospace, Healthcare.

UNIT II DESIGN FOR ADDITIVE MANUFACTURING (DfAM)

6

Concepts and Objectives - AM Unique Capabilities - Part Consolidation — Topology Optimization-Generative design - Lattice Structures - Multi-Material Parts and Graded Materials - Data Processing: CAD Model Preparation - AM File formats: STL-Problems with STL- AMF Design for Part Quality Improvement: Part Orientation - Support Structure - Slicing - Tool Path Generation — Design rules for Extrusion based AM.

UNIT III VAT POLYMERIZATION AND DIRECTED ENERGY DEPOSITION

6

Photo polymerization: Stereolithography Apparatus (SLA)- Materials -Process – top down and bottom up approach - Advantages - Limitations - Applications. Digital Light Processing (DLP) - Process - Advantages - Applications. Continuous Liquid Interface Production (CLIP)Technology. Directed Energy Deposition: Laser Engineered Net Shaping (LENS)- Process - Material Delivery - Materials -Benefits -Applications.

UNIT IV POWDER BED FUSION AND MATERIAL EXTRUSION

6

Powder Bed Fusion: Selective Laser Sintering (SLS): Process - Powder Fusion Mechanism - Materials and Application. Selective Laser Melting (SLM), Electron Beam Melting (EBM): Materials - Process - Advantages and Applications.

Material Extrusion: Fused Deposition Modeling (FDM)- Process-Materials -Applications and Limitations.

UNIT V OTHER ADDITIVE MANUFACTURING PROCESSES

6

Binder Jetting: Three-Dimensional Printing - Materials - Process - Benefits- Limitations - Applications.

Material Jetting: Multijet Modeling- Materials - Process - Benefits - Applications.

Sheet Lamination: Laminated Object Manufacturing (LOM)- Basic Principle- Mechanism: Gluing or Adhesive Bonding - Thermal Bonding- Materials-Application and Limitation.

TOTAL: 30 PERIODS

ADDITIVE MANUFACTURING LABORATORY Experiments

- 1. Modelling and converting CAD models into STL file.
- 2. Manipulation and error fixing of STL file.
- 3. Design and fabrication of parts by varying part orientation and support structures.
- 4. Fabrication of parts with material extrusion AM process.

- 5. Fabrication of parts with vat polymerization AM process.
- 6. Design and fabrication of topology optimized parts.

Equipment required - lab

- 1. Extrusion based AM machine
- 2. Resin based AM machine
- 3. Mechanical design software
- 4. Open-source AM software for STL editing, manipulation and slicing.

COURSE OUTCOMES:

At the end of this course students shall be able to:

CO1: Recognize the development of AM technology and how AM technology propagated into various businesses and developing opportunities.

CO2: Acquire knowledge on process of transforming a concept into the final product in AM technology.

CO3: Elaborate the vat polymerization and direct energy deposition processes and its applications.

CO4: Acquire knowledge on process and applications of powder bed fusion and material extrusion.

CO5: Evaluate the advantages, limitations, applications of binder jetting, material jetting and sheet lamination processes.

TEXT BOOKS:

- 1. Ian Gibson, David Rosen, Brent Stucker, Mahyar Khorasani "Additive manufacturing technologies". 3rd edition Springer Cham, Switzerland. (2021). ISBN: 978-3-030-56126-0
- 2. Andreas Gebhardt and Jan-Steffen Hötter "Additive Manufacturing: 3D Printing for Prototyping and Manufacturing", Hanser publications, United States, 2015, ISBN: 978-1-56990-582-1.

REFERENCES:

- 1. Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Manufacturing", Hanser Gardner Publication, Cincinnati., Ohio, 2011, ISBN :9783446425521.
- 2. Milan Brandt, "Laser Additive Manufacturing: Materials, Design, Technologies, and Applications", Woodhead Publishing., United Kingdom, 2016, ISBN: 9780081004333.
- 3. Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition, CRC Press., United States, 2015, ISBN-13: 978-1482223590.
- 4. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer., United States ,2006, ISBN: 978-1-4614-9842-1.
- 5. Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press., United States, 2011, ISBN: 9780849334092.

CME340 CAD/CAM L T P C 3 0 0 3

COURSE OBJECTIVES

- 1 To Introduce and understand the Basic of Design.
- 2 To study the two dimensional drafting and bill of material creation.
- 3 To learn three dimensional modelling and its advantages.
- 4 To study the basic and purpose of assembling modeling.
- 5 To study the basics of computer aided machining and part programming.

UNIT - I BASICS OF DESIGNS

9

TOTAL: 30 PERIODS

Understanding of Projections, Scales, units, GD & T; its 14 symbols, Special characteristics & Samp; Block readings. Revision / ECN status of drawings - Customer Specific requirements - Drawing reading

UNIT - II 2D DRAFTING

9

Projection views – Orthographic view, Axillary view, Full & Description views, Broken Section view, Offset Section view – Title Block creation – BOM Creation – Notes creation – Ballooning of 2D drawing and its features for Inspection reporting

UNIT - III 3D MODELING

9

Conversion of Views – 2D to 3D & D = Parametric and Non-Parametric Modeling – Tree features of 3D Modeling and its advantages – Surface Modeling – BIW (Body In White) – Solid Modeling, Boolean operations like Unites, Subtraction, Intersect, etc.

UNIT - IV ASSEMBLY MODELING

9

Basics of Assembly modeling, Purpose of Assembly modeling & amp; its advantages – Top to Down & Down

UNIT – V CAM 9

Basics of CNC Machining – 3, 4 & Drientation, Sample – CNC and Part Programing, CAM programing 2D & Drients of CAM Orientation, Boundary Creation, Cutter Path Selection, Cutter Compensation – Machining Stocks, Roughing, Re-roughing, Semi Finishing & Drientshing – Tool Path Generation, Isl and Milling Programing. Machining program simulation, integration of program with machine; Estimation of CNC Cycle time. – Post Process NC Code conversion and Setup Sheet Preparation.

TOTAL : 45 PERIODS

OUTCOMES: At the end of the course the students would be able to

- Discuss the basics of the design and concepts.
- 2. Develop the two dimensional drafting and projection views.
- 3. Discuss the three dimensional modeling, parametric and Non-parametric modeling
- 4. Discuss the assembly modeling and top down, bottom up approaches.
- 5. Develop the computer aided machining and wirting part programming.

TEXT BOOKS:

- 1. Computer Aided Design & Manufacturing Jacob Moses & Manufacturing Man
- 2. CAD / CAM Principles & Diplication J. Srinivas

- 1. CAD / CAM Ibrahim Zaid (Text & Dook)
- 2. CAD / CAM Chandandeep Grewal
- 3. CAD CAM & CAD CAM & CAMP; Automation Farazdak Haideri (Text & CAMP); Reference Book)
- 4. Computer Aided Design & Manufacturing Anup Goel
- 5. CAD / CAM PN Rao

							РО							Р	SO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	2	2	2				1			1	3	3	2
2	3	2	2	2	2				1			1	3	3	2
3	3	2	2	2	2				1			1	3	3	2
4	3	2	2	2	2				1			1	3	3	2
5	3	2	2	2	2				1			1	3	3	2
					Low	(1);	Medi	um (2);	High	(3)				

COURSE OBJECTIVES

- 1 To introduce the economic process selection principles and general design principles for manufacturability in the development and design of products for various engineering applications. Also, apply design consideration principles of casting in the design of cast products.
- 2 To learn the design consideration principles of forming in the design of extruded, stamped, and forged products
- 3 To learn design consideration principles of machining in the design of turned, drilled, milled, planed, shaped, slotted, and ground products.
- 4 To learn design consideration principles of welding in the design of welded products.
- 5 To learn design consideration principles in additive manufacturing

UNIT – I INTRODUCTION

9

General design principles for manufacturability- strength and mechanical factors, mechanisms selection, evaluation method, Process capability - Feature tolerances GeometricTolerances - Assembly limits -Datum features - Tolerance stacks.

Design to minimize material usage – Design for disassembly – Design for recyclability – Design for manufacture – Design for energy efficiency – Design to regulations and standards.

UNIT – II FACTORS INFLUENCING FORM DESIGN

9

Working principle, Material, Manufacture, Design- Possible solutions - Materials choice —Influence of materials on form design - form design of welded members, forgings and castings.

UNIT – III COMPONENT DESIGN - MACHINING CONSIDERATION

9

Design features to facilitate machining - drills - milling cutters - keyways - Doweling procedures, counter sunk screws - Reduction of machined area- simplification by separation - simplification by amalgamation - Design for machinability - Design for economy - Design for clampability - Design for accessibility - Design for assembly - Product design for manual assembly - Product design for automatic assembly - Robotic assembly.

UNIT – IV COMPONENT DESIGN – CASTING CONSIDERATION

9

Redesign of castings based on Parting line considerations - Minimizing core requirements, machined holes, redesign of cast members to obviate cores. Identification of uneconomical design - Modifying the design - group technology - Computer Applications for DFMA

UNIT – V DESIGN FOR ADDITIVE MANUFACTURING

9

Introduction to AM, DFMA concepts and objectives, AM unique capabilities, exploring design freedoms, Design tools for AM, Part Orientation, Removal of Supports, Hollowing out parts, Inclusion of Undercuts and Other Manufacturing Constraining Features, Interlocking Features, Reduction of Part Count in an Assembly, Identification of markings/ numbers.

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to

- 1. Elaborate the design principles for manufacturability
- 2. discuss the factors influencing in form design
- 3. Apply the component design features of various machine.
- 4. Discuss the design consideration principles of welding in the design of welded products.
- 5. Discuss the design consideration principles of additive manufacturing.

TEXT BOOKS:

- 1. James G. Bralla, "Design for Manufacturability Handbook", McGraw Hill Professional, 1998.
- 2. O. Molloy, E.A. Warman, S. Tilley, Design for Manufacturing and Assembly: Concepts, Architecti and Implementation, Springer, 1998.

REFERENCES:

- 1. CorradoPoli, Design for Manufacturing: A Structured Approach, Elsevier, 2001.
- David M. Anderson, Design for Manufacturability & Concurrent Engineering: How to Design for Lo Cost, Design in High Quality, Design for Lean Manufacture, and Design Quickly for Fast Production CIM Press, 2004.
- 3. Erik Tempelman, Hugh Shercliff, Bruno Ninaber van Eyben, Manufacturing and Design: Understanding the Principles of How Things Are Made, Elsevier, 2014.
- 4. Graedel T. Allen By. B, Design for the Environment Angle Wood Cliff, Prentice Hall. Reason Pub. 1996
- 5. Boothroyd, G. Heartz and Nike, Product Design for Manufacture, Marcel Dekker, 1994.

СО							РО								PSO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2	3	1	1				1			1	2	3	2
2	2	2	3	1	1				1			1	2	3	2
3	2	2	3	1	1				1			1	2	3	2
4	2	2	3	1	1				1			1	2	3	2
5	2	2	3	1	1				1			1	2	3	2

Low (1); Medium (2); High (3)

CME342

ERGONOMICS IN DESIGN

L T P C 3 0 0 3

COURSE OBJECTIVES

- 1 To introduce to industrial design based on ergonomics.
- 2 To consider ergonomics concept in manufacturing
- 3 To apply ergonomics in design of controls and display.
- 4 To apply environmental factors in ergonomics design.
- 5 To develop aesthetics applicable to manufacturing and product

UNIT – I INTRODUCTION

9

An approach to industrial design, Elements of design structure for industrial design in engineering application in modern manufacturing systems- Ergonomics and Industrial Design: Introduction to Ergonomics, Communication system, general approach to the man-machine relationship, Human component of work system, Machine component of work system, Local environment-light, Heat, Sound.

UNIT – II ERGONOMICS AND PRODUCTION

9

Introduction, Anthropometric data and its applications in ergonomic, working postures, Body Movements, Work Station Design, Chair Design. Visual Effects of Line and Form: The mechanics of seeing, Psychology of seeing, Figure on ground effect, Gestalt's perceptions - Simplicity, Regularity, Proximity, Wholeness. Optical illusions, Influences of line and form.

UNIT – III DESIGN PRINCIPLES FOR DISPLAY AND CONTROLS

9

Displays: Design Principles of visual Displays, Classification, Quantitative displays, Qualitative displays, check readings, Situational awareness, Representative displays, Design of pointers, Signal and warning lights, colour coding of displays, Design of multiple displays Controls: Design considerations, Controls with little efforts – Push button, Switches, rotating Knobs. Controls with muscular effort – Hand wheel, Crank, Heavy lever, Pedals. Design of controls in automobiles, Machine Tools

UNIT – IV ENVIRONMENTAL FACTORS

9

Colour: Colour and light, Colour and objects, Colour and the eye – after Image, Colour blindness, Colour constancy, Colour terms – Colour circles, Munsel colour notation, reactions to colour and colour combination – colour on engineering equipments, Colour coding, Psychological effects, colour and machine form, colour and style

UNIT – V AESTHETIC CONCEPTS

9

TOTAL: 45 PERIODS

Concept of unity, Concept of order with variety, Concept of purpose, Style and environment, Aesthetic expressions - Symmetry, Balance, Contrast, Continuity, Proportion. Style - The components of style, House style, Style in capital good. Introduction to Ergonomic and plant layout software's, total layout design.

OUTCOMES: At the end of the course the students would be able to

- 1. Appreciate ergonomics need in the industrial design.
- 2. Apply ergonomics in creation of manufacturing system
- 3. Discuss on design of controls and display.
- 4. Consider environmental factors in ergonomics design.
- 5. Report on importance of aesthetics to manufacturing system and product

TEXT BOOKS:

- Ergonomics in Design: Methods and Techniques (Human Factors and Ergonomics) by Mar M. Soares , Francisco Rebelo
- 2. Ergonomics in Product Design by Sendpoints Publishing Co. Ltd.

REFERENCES:

- 1. Benjamin W.Niebel, Motion and Time Study, Richard, D. Irwin Inc., 7thEdition, 2002
- 2. Brain Shakel, "Applied Ergonomics Hand Book", Butterworth Scientific London 1988.
- 3. Bridger, R.C., Introduction to Ergonomics, 2ndEdition, 2003, McGraw Hill Publications.
- 4. Martin Helander, A Guide to human factors and Ergonomics, Taylor and Francis, 2006
- 5. Mayall W.H. "Industrial design for Engineers", London Hiffee books Ltd., 1988.

							РО							Р	SO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		1	3		2		3		1			1	1	3	3
2		1	3		2		3		1			1	1	3	3
3		1	3		2		3		1			1	1	3	3
4		1	3		2		3		1			1	1	3	3
5		1	3		2		3		1			1	1	3	3
					Low ((1);	Med	ium (2	2);	High	(3)				

CME343

NEW PRODUCT DEVELOPMENT

L T P C 3 0 0 3

COURSE OBJECTIVES

- 1 To introduce the fundamental concepts of the new product development
- 2 To develop material specifications, analysis and process.
- 3 To Learn the Feasibility Studies & reporting of new product development.
- 4 To study the New product qualification and Market Survey on similar products of new product development
- 5 To learn Reverse Engineering. Cloud points generation, converting cloud data to 3D model

UNIT – I FUNDAMENTALS OF NPD

9

Introduction – Reading of Drawing – Grid reading, Revisions, ECN (Engg. Change Note), Component material grade, Specifications, customer specific requirements – Basics of monitoring of NPD applying Gantt chart, Critical path analysis – Fundamentals of BOM (Bill of Materials), Engg. BOM & Manufacturing BOM. Basics of MIS software and their application in industries like SAP, MS Dynamics, Oracle ERP Cloud – QFD.

UNIT – II MATERIAL SPECIFICATIONS, ANALYSIS & PROCESS

9

Material specification standards – ISO, DIN, JIS, ASTM, EN, etc. – Awareness on various manufacturing process like Metal castings & Forming, Machining (Conventional, 3 Axis, 4 Axis, 5 Axis,), Fabrications, Welding process. Qualifications of parts mechanical, physical & Chemical properties and their test report preparation and submission. Fundamentals of DFMEA & PFMEA, Fundamentals of FEA, Bend Analysis, Hot Distortion, Metal and Material Flow, Fill and Solidification analysis.

UNIT – III ESSENTIALS OF NPD

9

RFQ (Request of Quotation) Processing – Feasibility Studies & reporting – CFT (Cross Function Team) discussion on new product and reporting – Concept design, Machine selection for tool making, Machining – Manufacturing Process selection, Machining Planning, cutting tool selection – Various Inspection methods – Manual measuring, CMM – GOM (Geometric Optical Measuring), Lay out marking and Cut section analysis. Tool Design and Detail drawings preparation, release of details to machine shop and CAM programing. Tool assembly and shop floor trials. Initial sample submission with PPAP documents.

UNIT – IV CRITERIONS OF NPD

9

New product qualification for Dimensions, Mechanical & Physical Properties, Internal Soundness proving through X-Ray, Radiography, Ultrasonic Testing, MPT, etc. Agreement with customer for testing frequencies. Market Survey on similar products, Risk analysis, validating samples with simulation results, Lesson Learned & Horizontal deployment in NPD.

UNIT – V REPORTING & FORWARD-THINKING OF NPD

9

Detailed study on PPAP with 18 elements reporting, APQP and its 5 Sections, APQP vs PPAP, Importance of SOP (Standard Operating Procedure) – Purpose & documents, deployment in shop floor. Prototyping & RPT - Concepts, Application and its advantages, 3D Printing – resin models, Sand cores for foundries; Reverse Engineering. Cloud points generation, converting cloud data to 3D model – Advantages & Limitation of RE, CE (Concurrent Engineering) – Basics, Application and its advantages in NPD (to reduce development lead time, time to Market, Improve productivity and product cost.)

TOTAL :45 PERIODS

OUTCOMES: At the end of the course the students would be able to

- 1. Discuss fundamental concepts and customer specific requirements of the New Product developme
- 2. Discuss the Material specification standards, analysis and fabrication, manufacturing process.
- 3. Develop Feasibility Studies & reporting of New Product development
- 4. Analyzing the New product qualification and Market Survey on similar products of new product development
- 5. Develop Reverse Engineering. Cloud points generation, converting cloud data to 3D model

TEXT BOOKS:

- 1. Product Development Sten Jonsson
- 2. Product Design & Development Karl T. Ulrich, Maria C. Young, Steven D. Eppinger

- 1. Revolutionizing Product Development Steven C Wheelwright & Kim B. Clark
- 2. Change by Design
- 3. Toyota Product Development System James Morgan & Jeffrey K. Liker
- 4. Winning at New Products Robert Brands 3rd Edition
- 5. Product Design & Value Engineering Dr. M.A. Bulsara & Dr. H.R. Thakkar

СО						P	0							PS	60
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	1	3	1				1	1			1	1	3	2
2	1	1	3	1				1	1			1	1	3	2
3	1	1	3	1				1	1			1	1	3	2
4	1	1	3	1				1	1			1	1	3	2
5	1	1	3	1				1	1			1	1	3	2

Low (1); Medium (2); High (3)

CME344 PRODUCT LIFE CYCLE MANAGEMENT L T P C 3 0 0 3

COURSE OBJECTIVES

- 1 To study about the history, concepts and terminology in PLM
- 2 To learn the functions and features of PLM/PDM
- 3 To develop different modules offered in commercial PLM/PDM tools
- 4 To demonstrate PLM/PDM approaches for industrial applications
- 5 To use PLM/PDM with legacy data bases, Coax& ERP systems

UNIT - I HISTORY, CONCEPTS AND TERMINOLOGY OF PLM

9

Introduction to PLM, Need for PLM, opportunities of PLM, Different views of PLM - Engineering Data Management (EDM), Product Data Management (PDM), Collaborative Product Definition Management (cPDm), Collaborative Product Commerce (CPC), Product Lifecycle Management (PLM). PLM/PDM Infrastructure – Network and Communications, Data Management, Heterogeneous data sources and applications

UNIT - II PLM/PDM FUNCTIONS AND FEATURES

9

User Functions – Data Vault and Document Management, Workflow and Process Management, Produ Structure Management, Product Classification and Programme Management. Utility Functions Communication and Notification, data transport, data translation, image services, system administratic and application integration

UNIT - III DETAILS OF MODULES IN A PDM/PLM SOFTWARE

9

Case studies based on top few commercial PLM/PDM tools – Teamcenter, Windchill, ENOVIA, Aras PLI SAP PLM, Arena, Oracle Agile PLM and Autodesk Vault.-Architecture of PLM software- selection criteric of software for particular application - Brand name to be removed

UNIT - IV ROLE OF PLM IN INDUSTRIES

g

TOTAL: 45 PERIODS

Case studies on PLM selection and implementation (like auto, aero, electronic) - other possible sector PLM visioning, PLM strategy, PLM feasibility study, change management for PLM, financial justification PLM, barriers to PLM implementation, ten step approach to PLM, benefits of PLM for—busines organisation, users, product or service, process performance- process compliance and process automatic

UNIT – V BASICS ON CUSTOMISATION/INTEGRATION OF PDM/PLM SOFTWARE 9

PLM Customization, use of EAI technology (Middleware), Integration with legacy data base, CAD, SLM and ERP

OUTCOMES: At the end of the course the students would be able to

- 1 Summarize the history, concepts and terminology of PLM
- 2 Develop the functions and features of PLM/PDM
- 3 Discuss different modules offered in commercial PLM/PDM tools.
- 4 Interpret the implement PLM/PDM approaches for industrial applications.
- 5 Integrate PLM/PDM with legacy data bases, CAx& ERP systems

TEXT BOOKS:

- 1. Product Lifecycle Management for a Global Market, Springer; 2014 edition (29 September 2016),ISBN-10: 3662516330
- 2. Product Life Cycles and Product Management, Praeger Publishers Inc (27 March 1989)ISBN-10 : 0899303196

REFERENCES:

- 1. AnttiSaaksvuori and Anselmilmmonen, "Product Lifecycle Management", Springer Publisher, 2008 (Edition)
- 2. IvicaCrnkovic, Ulf Asklund and AnnitaPerssonDahlqvist, "Implementing and Integrating Product Data Management and Software Configuration Management", Artech House Publishers, 2003.
- 3. John Stark, "Global Product: Strategy, Product Lifecycle Management and the Billion Customer Question", Springer Publisher, 2007
- 4. John Stark, "Product Lifecycle Management: 21st Century Paradigm for Product Realisation", Spring Publisher, 2011 (2nd Edition).
- 5. Michael Grieves, "Product Life Cycle Management", Tata McGraw Hill, 2006.

							РО							P	SO
CC	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	1	3	1				1	1			1	1	3	3
2	1	1	3	1				1	1			1	1	3	3
3	1	1	3	1				1	1			1	1	3	3
4	1	1	3	1				1	1			1	1	3	3
5	1	1	3	1				1	1			1	1	3	3
					Lov	w (1);	Me	dium	(2);	Hiç	gh (3)				

CME346

DIGITAL MANUFACTURING AND IOT

L T P C 2 0 2 3

COURSE OBJECTIVES

- 1 To study the various aspects of digital manufacturing.
- To inculcate the importance of DM in Product Lifecycle Management and Supply chain Management.
- 3 To formulate of smart manufacturing systems in the digital work environment.
- 4 To interpret IoT to support the digital manufacturing.
- 5 To elaborate the significance of digital twin.

UNIT – I INTRODUCTION

6

Introduction – Need – Overview of Digital Manufacturing and the Past – Aspects of Digital Manufacturing: Product life cycle, Smart factory, and value chain management – Practical Benefits of Digital Manufacturing – The Future of Digital Manufacturing.

UNIT – II DIGITAL LIFE CYCLE & SUPPLY CHAIN MANAGEMENT

6

Collaborative Product Development, Mapping Requirements to specifications – Part Numbering, Engineering Vaulting, and Product reuse – Engineering Change Management, Bill of Material and Process Consistency – Digital Mock up and Prototype development – Virtual testing and collateral. Overview of Digital Supply Chain - Scope& Challenges in Digital SC - Effective Digital Transformation - Future Practices in SCM

UNIT - III SMART FACTORY

Smart Factory – Levels of Smart Factories – Benefits – Technologies used in Smart Factory – Smart Factory in IoT- Key Principles of a Smart Factory – Creating a Smart Factory – Smart Factories and Cybersecurity

UNIT – IV INDUSTRY 4.0

6

6

Introduction – Industry 4.0 –Internet of Things – Industrial Internet of Things – Framework: Connectivity devices and services – Intelligent networks of manufacturing – Cloud computing – Data analytics –Cyber physical systems –Machine to Machine communication – Case Studies.

UNIT – V STUDY OF DIGITAL TWIN

6

Basic Concepts – Features and Implementation – Digital Twin: Digital Thread and Digital Shadow-Building Blocks – Types – Characteristics of a Good Digital Twin Platform – Benefits, Impact & Challenges – Future of Digital Twins.

TOTAL:30 PERIODS

DIGITAL MANUFACTURING AND IOT LABORATORY Experiments

- 1. Measure the Distance Using Ultrasonic Sensor and Make Led Blink Using Arduino
- 2. Detect the Vibration of an Object Using Arduino
- 3. Sense a Finger When it is Placed on Board Using Arduino
- 4. Temperature Notification Using Arduino
- 5. Switch Light On and Off Based on the Input of User Using Raspberry Pi
- 6. Connect with the Available Wi-Fi Using Arduino

TOTAL: 30 PERIODS

OUTCOMES: At the end of the course the students would be able to

- 1. Impart knowledge to use various elements in the digital manufacturing.
- 2. Differentiate the concepts involved in digital product development life cycle process and supply chain management in digital environment.
- 3. Select the proper procedure of validating practical work through digital validation in Factories.
- 4. Implementation the concepts of IoT and its role in digital manufacturing.
- 5. Analyse and optimize various practical manufacturing process through digital twin.

TEXT BOOKS:

- 1. Zude Zhou, Shane (Shengquan) Xie and Dejun Chen, Fundamentals of Digital Manufacturing Science, Springer-Verlag London Limited, 2012.
- 2. Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", A press, 2016.

- 1. Lihui Wang and Andrew YehChing Nee, Collaborative Design and Planning for Digital Manufacturing, Springer-Verlag London Limited, 2009.
- 2. Andrew Yeh Chris Nee, Fei Tao, and Meng Zhang, "Digital Twin Driven Smart Manufacturing", Elsevier Science., United States, 2019.
- 3. Alp Ustundag and Emre Cevikcan, "Industry 4.0: Managing The Digital Transformation", Springer Series in Advanced Manufacturing., Switzerland, 2017
- 4. Ronald R. Yager and Jordan Pascual Espada, "New Advances in the Internet of Things", Springer., Switzerland, 2018.
- 5. Ronald R. Yager and Jordan Pascual Espada, "New Advances in the Internet of Things", Springer., Switzerland, 2018.

CO							РО							PSO	
CO	1	1 2 3 4 5 6 7 8 9 10 11 12													3
1	3		1	1	3	3		1	2	2		2	3	2	1

2	3	2	3	1	3	3	2	2	2	2		2	3	2	3
3	3		3	1	3	3	2		3	2		2	3	2	3
4	3	2	2	2	3	3	2	2	2	2	2	2	3	2	3
5	3		2		1	3		2	2	2		2	3	2	2
				Lov	_N (1) ·	1.//	adium	(2) .	Н	iah (3	2)				

CME347 LEAN MANUFACTURING L T P C 3 0 0 3

COURSE OBJECTIVES

- 1 To introduce the basics of 6 SIGMA
- 2 To learning about the lean manufacturing tools.
- 3 To study about the deeper understanding methodologies of Lean manufacturing.
- 4 To study the lean concepts and its elements.
- To learn implementation and challenges of lean manufacturing.

UNIT - I BASICS OF 6 SIGMA

9

Introduction to 6 Sigma, basic tools of six sigma like problem solving approach, standarddeviation, normal distribution, various sigma levels with some examples, value for theenterprise, Variation, and sources of variation, Mean and moving the mean, Various qualitycosts, cost of poor quality.

UNIT – II INTRODUCTION TO LEAN MANUFACTURING TOOLS

9

Process Capability Indices, Cause and Effect diagram, Control Charts, Introduction toFMEA, APQP, PPAP. 3 foundational 6 Sigma methodologies: DMAIC, DMEDI, andProcess Management DMEDI for process creation, DMAIC for process improvement andPDCA for sustaining improvements.

UNIT – III DEEPER UNDERSTADING METHODOLOGIES

9

What is a process, Why Process management, Keys to process management, Difference between process management and 6 Sigma, Introduction to Deming cycle, PDCA, DMAIC and continuous improvement, DMEDI for creation process, DMAIC Vs DMEDI with examples, Introduction to Toyota Production System, Six Sigma and Production System integration.

UNIT – IV LEAN ELEMENTS

9

Introduction to Lean Concepts like In-Built Quality, Concept of Right Part at the Right Time, Lead Time reduction, Optimum utilization of Capital, Optimum utilization of People. Understanding the Zero-defect concept and Metrics, Focus on Human Resources, Quality, Delivery, Cost. Building Zero defect capabilities, Cultural and Organizational aspects

UNIT – V IMPLEMENTATION AND CHALLENGES

9

Implementing Checks and Balances in the process, Robust Information Systems, Dashboard, follow up and robust corrective and preventive mechanism. Concept of Audits, and continuous improvement from gap analysis, risk assessments etc.

TOTAL: 45 PERIODS

OUTCOMES: At the end of the course the students would be able to

- 1. Discuss the basics of 6 SIGMA
- 2. Elaborate the lean manufacturing tools.
- 3. Illustrate about the deeper understanding methodologies of Lean manufacturing.
- 4. Discuss lean concepts and its elements.
- 5. Describe the implementation and challenges of lean manufacturing.

TEXT BOOKS:

- 1. Quality Planning and Analysis- JM Juran& FM Gryna. Tata Mc Graw Hill
- 2. Lean Manufacturing: Principles to Practice by Akhilesh N. Singh, Bibliophile SouthAsia
- 3. The Toyota Way: 14 Management Principles
- 4. Gemba Kaizen: A Commonsense Approach to a Continuous Improvement Strategy, Masaki Imai

REFERENCES:

- 1. Quality Council of India https://qcin.org/ & its library. https://qcin.org/nbqp/knowledge_bank/
- 2. International Society of Six Sigma Professionals: https://isssp.org/about-us/
- 3. NPTEL / SWAYAM: https://nptel.ac.in/courses/110105123 :Six Sigma, Prof. Jitesh J Thakkar, IIT Kharagpur, Certification course. (Self- Learning).
- 4. Older / Previous editions of AIAG manuals on APQP, FMEA and PPAP. These are great sources of information on Quality Planning and has basics of Project Management and required skills.
- 5. Quality Management for Organizations Using Lean Six Sigma Techniques- Erick C Jones

СО						РО)							PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	1	2	1	1				1		3	1	1	2	1
2	1	1	2	1	1				1		3	1	1	2	1
3	1	1	2	1	1				1		3	1	1	2	1
4	1	1	2	1	1				1		3	1	1	2	1
5	1	1	2	1	1				1		3	1	1	2	1
	Low (1); Medium (2); High (3)														

CME348 MODERN ROBOTICS L T P C 2 0 2 3

COURSE OBJECTIVES

- 1 To introduce definition, history of robotics and robot anatomy.
- 2 To learn the simulation of robot kinematics
- 3 To study the grasping and manipulation of robots.
- 4 To study about mobile robot and manipulation.
- 5 To study the applications of industrial, service, domestic robots.

UNIT – I INTRODUCTION

6

Robot: Definition, History of Robotics, Robot Anatomy, Co-ordinate systems, types and classification, Configuration space and degrees of freedom of rigid bodies and robots, Configuration space topology and representation; configuration and velocity constraints; task space and workspace, Rigid-body motions, rotation matrices, angular velocities, and exponential coordinates of rotation, Homogeneous transformation matrices.

UNIT – II SIMULATION OF ROBOT KINEMATICS

6

Robot kinematics, Forward and inverse kinematics (two three four degrees of freedom), Forward and inverse kinematics of velocity, Homogeneous transformation matrices, translation and rotation matrices Dennavit and Hartenberg (D-H) transformation, Dynamics of Open Chains, Trajectory Generation, motion planning, robot control: First- and second-order linear error dynamics, stability of a feedback control system.

UNIT - III GRASPING AND MANIPULATION OF ROBOTS

6

Kinematics of contact, contact types (rolling, sliding, and breaking), graphical methods for representing kinematic constraints in the plane, and form-closure grasping, Coulomb friction, friction cones, graphical methods for representing forces and torques in the plane, End effectors, grippers, types of gripper, gripper force analysis, and examples of manipulation and grasping.

UNIT – IV MOBILE ROBOTS

6

Mobile robot, Wheeled Mobile Robots: Kinematic models of omnidirectional and non-holonomic wheeled mobile robots, Controllability, motion planning, feedback control of non-holonomic wheeled mobile robots; odometry for wheeled mobile robots; and mobile manipulation. Reference Trajectory generation, feed forward control

UNIT – V APPLICATIONS OF ROBOTS

6

Application of robotic: industrial robots, Service robots, domestic and house hold robots, Medical robots, military robots, agricultural robots, space robots, Aerial robotics Role of robots in inspection, assembly, material handling, underwater, space and healthcare

TOTAL:30 PERIODS

MODERN ROBOTICS LABORATORY

Experiments

- 1. 3D modeling and motion simulation of rotational joint assembly
- 2. 3D modeling and motion simulation of prismatic joint assembly
- 3. 3D modeling and motion simulation of Cartesian robot
- 4. 3D modeling and motion simulation of articulated robot
- 5. 3D modeling and motion simulation of spherical robot
- 6. 3D modeling and motion simulation of cylindrical robot

TOTAL:30 PERIODS

OUTCOMES: At the end of the course the students would be able to

- 1. Discuss the definition, history of robotics and robot anatomy.
- 2. Develop the simulation of robot kinematics
- 3. Describe the grasping and manipulation of robots.
- 4. Explain about mobile robot and manipulation.
- 5. Discuss the applications of industrial, service, domestic robots.

TEXT BOOKS:

- Modern Robotics: Mechanics, Planning, and Control, by Kevin M. Lynch, Frank C. Park, Cambridge University Press; 1st edition (25 May 2017), ISBN-10: 110715
- 2. Modern Robotics: Mechanics, Systems and Control, by Julian Evans, Larsen and Keller Education (27 June 2019), ISBN-10: 1641720751

- 1. Modern Robotics: Designs, Systems and Control, by Jared Kroff, Willford Press (18 June 2019)ISBN-10: 1682856763
- Advanced Technologies in Modern Robotic Applications, by ChenguangYang, Hongbin Ma, Mengyin Fu, Springer; Softcover reprint of the original 1st ed. 2016 edition (30 May 2018), ISBN-10: 981109263X
- 3. Modern Robotics: Building Versatile Machines, by Harry Henderson, Facts On File Inc; Illustrated edition (1 August 2006), ISBN-10: 0816057451
- 4. Artificial Intelligence for Robotics, by Francis X. Govers, Packt Publishing Limited; Standard Edition (30 August 2018), ISBN-10: 1788835441
- 5. Modern Robotics Hardcover by Lauren Barrett (Editor), Murphy & Moore Publishing (1 March 2022), ISBN-10: 1639873732

						Р	0							PSO	
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	3	1	2				1			1	1	2	3
2	2	1	3	1	2				1			1	1	2	3
3	2	1	3	1	2				1			1	1	2	3
4	2	1	3	1	2				1			1	1	2	3

5	2	1	3	1	2			1		1	1	2	3
				Lo	w (1)	; M	<i>י</i> וי	Hig	h (3)				

CME349 GREEN MANUFACTURING DESIGN AND PRACTICES L T P C 3 0 0 3

COURSE OBJECTIVES

- 1 To introduce the concept of environmental design and industrial ecology.
- 2 To impart knowledge about air pollution and its effects on the environment.
- To enlighten the students with knowledge about noise and its effects on the environment.
- To enlighten the students with knowledge about water pollution and its effects on the environment.
- 5 To introduce the concept of green co-rating and its need

UNIT – I DESIGN FOR ENVIRONMENT AND LIFE CYCLE ASSESSMENT

Environmental effects of design -selection of natural friendly material - Eco design - Environmental damage Material flow and cycles - Material recycling - Emission less manufacturing- Industrial Ecology - Pollution prevention - Reduction of toxic emission - design for recycle.

UNIT – II AIR POLLUTION SAMPLING AND MEASUREMENT

Primary and Secondary Pollutants, Automobile Pollutants, Industrial Pollution, Ambient air quality Standards, Metrological aspects of air Pollution, Temperature lapse Rates and Stability-wind velocity and turbulence-Pump behavior dispersion of air Pollutants-solution to the atmosphere dispersion equation-the Gaussian Plume Model, Air pollution sampling-collection of gaseous air pollutants-collection of particulate pollutants-stock sampling, analysis of air pollutants-sulfur dioxide-nitrogen dixide, carbon monoxide, oxidants and ozone.

UNIT – III NOISE POLLUTION AND CONTROL

9

Frequency and Sound Levels, Units of Noise based power radio, contours of Loudness. Effect of human, Environment and properties, Natural and Anthrogenic Noise Sources, Measuring Instruments for frequency and Noise levels, Masking of sound, Types, Kinetics, Selection of different reactors used for waste treatment, Treatment of noise at source, Path and Reception, Sources of noise, Effects of noise-Occupational Health hazards, thermal Comforts, Heat Island Effects, Radiation Effects.

UNIT – IV WATER DEMAND AND WATER QUALITY

9

Factors affecting consumption, Variation, Contaminants in water, Nitrates, Fluorides, Detergents, taste and odour, Radio activity in water, Criteria, for different impurities in water for portable and non-portable use, Point and non-point Source of pollution, Major pollutants of Water, Water Quality Requirement for different uses, Global water crisis issues.

UNIT – V GREEN CO-RATING

9

Ecological Footprint - Need For Green Co-Rating – Green Co-Rating System – Intent – System Approach – Weightage- Assessment Process – Types Of Rating – Green Co-Benefits – Case Studies Of Green Co-Rating

Total:45 Periods

OUTCOMES: At the end of the course the students would be able to

- 1. Explain the environmental design and selection of eco-friendly materials.
- 2. Analyse manufacturing processes towards minimization or prevention of air pollution.
- 3. Analyse manufacturing processes towards minimization or prevention of noise pollution.
- 4. Analyse manufacturing processes towards minimization or prevention of water pollution.
- 5. Evaluate green co-rating and its benefits.

TEXT BOOKS:

- 1. Gradel.T.E. and B.R. Allenby Industrial Ecology Prentice Hall 2010
- 2. Rao M.N. and Dutta A.K. "Wastewater treatment", Oxford & IBH publishing Co. Pvt. Ltd., New Delhi, Second Edition, 2006

REFERENCES:

- 1. Gradel.T.E. and B.R. Allenby Industrial Ecology Prentice Hall 2010
- 2. Frances Cairncross– Costing the Earth: The Challenge for Governments, the Opportunities for Business Harvard Business School Press 1993.
- 3. World Commission on Environment and Development (WCED), Our Common Future, Oxford University Press 2005.
- 4. Rao M.N. and Dutta A.K. "Wastewater treatment", Oxford & IBH publishing Co. Pvt. Ltd., New Delhi, Second Edition, 2006
- 5. Rao CS Environmental Pollution Control Engineering-, Wiley Eastern Ltd., New Delhi, 2006.
- 6. Lewis H Bell and Douglas H Bell, Industrial noise control, Fundamentals and applications, Marcel Decker, 1994.

						Р	0							PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	1	3	1			3		1			1	1	2	2
2	1	1	3	1			3		1			1	1	2	2
3	1	1	3	1			3		1			1	1	2	2
4	1	1	3	1			3		1			1	1	2	2
5	1	1	3	1			3		1			1	1	2	2
				Lov	w (1)	; M	edium	(2);	Н	igh (3)				

CME350 ENVIRONMENT SUSTAINABILITY AND IMPACT L T P C ASSESSMENT 3 0 0 3

COURSE OBJECTIVES

- To make the students to understand the concepts of Environmental Sustainability & Impact Assessment
- 2 To familiarize the students in environmental decision making procedure.
- Make the students to identify, predict and evaluate the economic, environmental, and social impact of development activities
- 4 To provide information on the environmental consequences for decision making
- To promote environmentally sound and sustainable development through the identification of appropriate alternatives and mitigation measures.

UNIT – I ENVIRONMENTAL IMPACT ASSESMENT

Environmental impact assessment objectives – rationale and historical development of EIA - Conceptual frameworks for EIA Legislative development – European community directive – Hungarian directive.

UNIT – II ENVIRONMENTAL DECISION MAKING

9

Strategic environmental assessment and sustainability appraisal – Mitigation, monitoring and management of environmental impacts- Socio economic impact assessment.

UNIT – III ENVIRONMENTAL POLICY, PLANNING AND LEGISLATION

9

Regional spatial planning and policy – Cumulative effects assessment – Planning for climate change, uncertainty and risk.

UNIT – IV LIFE CYCLE ASSESSMENT

q

Life cycle assessment; Triple bottom line approach; Industrial Ecology. Ecological foot printing, Design for Environment, Future role of LCA, Product stewardship, design, durability and justifiability, measurement techniques and reporting

UNIT – V SUSTAINABLE URBAN ECONOMIC DEVELOPMENT

9

Spatial economics – Knowledge economy and urban regions.

TOTAL: 45 PERIODS

OUTCOMES: At the end of the course the students would be able to

- 1. Explain the concepts of Environment Sustainability and trained to make decision related to Environment.
- 2. Make decision that has an effect on our environment
- 3. Evaluate the basics of environmental policy, planning and various legislation Get valuable information for exploring decisions in each life stage of materials, buildings, services and infrastructure.
- 4. Explain the Life cycle assessment of Environmental sustainability.
- 5. Explain sustainable urban economic development.

TEXT BOOKS:

- 1. The Application of Science in Environmental Impact Assessment, by Aaron J. MacKinnon, Peter N. Duinker, Tony R. Walker, Routledge; 1st edition (14 May 2019), ISBN-10: 0367340194
- 2. Routledge Handbook of Environmental Impact Assessment, by Kevin Hanna, Routledge; 1 edition (11 April 2022), ISBN-10: 0367244470

- 1. Clive George, C. Collin, H. Kirkpolarice Impact Assessment and sustainable development Edward Elgar Publishing, 2007
- 2. Robort B Gibsan, Sustainability Assessment, Earth Scan publishers, 2005
- 3. Simon Dresner, The principle of sustainability Earth Scan publishers, 2008
- 4. Canter, R.L., "Environmental Impact Assessment", McGraw Hill Inc., New Delhi, 1996.
- 5. Shukla, S.K. And Srivastava, P.R., "Concepts In Environmental Impact Analysis", Common Wealth Publishers, New Delhi, 1992.
- 6. John G. Rau And David C Hooten "Environmental Impact Analysis Handbook", McGraw Hill Book Company, 1990.

СО						Р	O							PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1		2				3		1			1	1	2	1
2	1		2				3		1			1	1	2	1
3	1		2				3		1			1	1	2	1
4	1		2				3		1			1	1	2	1
5	1		2				3		1			1	1	2	1
				Lov	v (1) ;	М	edium	n (2);	Н	ligh (3	3)				

ENERGY SAVING MACHINERY AND COMPONENTS

L T P C 3 0 0 3

COURSE OBJECTIVES

- 1 To introduce the various energy saving machineries and components to the students for the purpose of conserving energy.
- 2 To study the basics and principles of transforms, Pumps and motors.
- To impart the knowledge about the methods of energy conservation.
- 4 To introduce the energy efficiency devices and concepts of ENCON.
- 5 To impart the knowledge about CO2 mitigation.

UNIT – I BASICS OF ELECTRICAL ENERGY USAGE

q

Fuel to Power: Cascade Efficiency – Electricity Billing: Components and Costs – kVA – Need and Control – Determination of kVA demand and Consumption – Time of Day Tariff – Power Factor Basics – Penalty Concept for PF – PF Correction – Demand Side Management (a brief) - energy monitoring, measurement and analysis.

UNIT – II TRANSFORMERS AND MOTORS

9

Transformer – Basics and Types – AVR and OLTC Concepts – Selection of Transformers – Performance Prediction - Energy Efficient Transformers - Motors : Specification and Selection – Efficiency / Load Curve – Load Estimation – Assessment of Motor Efficiency under operating conditions – Factors affecting performance – ill effects of Rewinding and Over sizing - Energy Efficient Motors – ENCON Scope. Transmission Line Parameters – Transmission Line Losses- Kelvin's Law Performance Calculation and Analysis

UNIT – III FANS, PUMPS AND COMPRESSORS

9

Basics – Selection – Performance Evaluation – Cause for inefficient operation – scope for energy conservation – methods adopted for effecting ENCON – Economics of ENCON adoption.

UNIT – IV STUDY OF ILLUMINATION AND ENERGY EFFICIENT DEVICES

9

Specification of luminaries - Types - Efficacy - Selection and Application - ENCON Avenues and Economic Proposition - New Generation Luminaries (LED - Induction Lighting) - Soft Starters- Auto Star - Delta - Star Starters- APFC - Variable Speed and Frequency Drives - Time Sensors - Occupancy Sensors.

UNIT – V CO₂ MITIGATION AND CASE STUDIES

9

Evaluation for 3 / 4 Typical Sectors – PAT Scheme (an introduction) – CO₂ Mitigation - Energy Conservation - Cost Factor. Case Studies on Industrial Energy Audit.

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to

- 1. Explain the various energy saving machinery and components.
- 2. Evaluate the various methods of conservation of energy.
- 3. Evaluate the performance and energy conservation of fans, pumps and compressors.
- 4. Discuss the various energy efficiency devices.
- 5. Explain the co2 mitigation and cost factor.

TEXT BOOKS:

- 1. Energy-Efficient Shutdown of Circuit Components and Computing Systems, by Ehsa Pakbaznia.
 - Proquest, Umi Dissertation Publishing (1 September 2011) ,ISBN-10: 1243819898
- 2. Handbook on Energy Efficiency, TERI, New Delhi, 2001

REFERENCES:

- 1. Hamies, Energy Auditing and Conservation; Methods Measurements, management and Case Study, Hemisphere, Washington, 1980
- 2. Trivedi, PR and Jolka KR, Energy Management, Commonwealth Publication, New Delhi, 1997
- 3. Handbook on Energy Efficiency, TERI, New Delhi, 2001
- 4. Peters, Kraushaar and Ristenen, Sustainable Energy, beta test draft, Energy and Problems of a Technical Society, 1993
- 5. Guide book for National Certification Examination for Energy Managers and Energy Auditors (www.energymanagertraining.com)
- 6. Nagrath IJ and Kothari DP, Power system engineering, TMH, 2007

CO						Р	0							PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2	1	1			3		1			1	1	2	2
2	2	2	1	1			3		1			1	1	2	2
3	2	2	1	1			3		1			1	1	2	2
4	2	2	1	1			3		1			1	1	2	2
5	2	2	1	1			3		1			1	1	2	2
				Lo	w (1)	; M	edium	(2);	Hi	igh (3))				

CME352 GREEN SUPPLY CHAIN MANAGEMENT L T P C 3 0 0 3

COURSE OBJECTIVES

- 1 To familiar the various standards and legislation of modern electronic manufacturing.
- To know the conventional electronic processing and lead-free electronic manufacturing techniques.
- To recognize the steps involved in assembly process and understand the need of recycle the electronics
- To implement reliability and product life cycle estimation tools in green electronic manufacturing.
- 5 To demonstrate the green electronic manufacturing procedure in applications.

UNIT – I INTRODUCTION TO GREEN ELECTRONICS

9

Environmental concerns of the modern society- Overview of electronics industry and their relevant regulations in China, European Union and other key countries- global and regional strategy and policy on green electronics industry. Restriction of Hazardous substances (RoHS) - Waste Electrical and electronic equipment (WEEE - Energy using Product (EuP) and Registration - Evaluation, Authorization and Restriction of Chemical substances (REACH).

UNIT – II GREEN ELECTRONICS MATERIALS AND PRODUCTS

9

Basics of IC manufacturing and its process – Electronics with Lead (Pb) -free solder pastes, conductive adhesives, Introduction to green electronic materials and products - halogen-free substrates and components. Substitution of non-recyclable thermosetting polymer based composites with recyclable materials X-Ray Fluorescence (XRF) for identifying hazardous substances in electronic products

UNIT – III GREEN ELECTRONICS ASSEMBLY AND RECYCLING

9

Various processes in assembling electronics components - the life-cycle environmental impacts of the materials used in the processes - substrate interconnects. Components and process equipments - Technology and management on e-waste recycle system construction, global collaboration, and product disassembles technology.

UNIT – IV PRODUCT DESIGN AND SUSTAINABLE ECO-DESIGN

Stages of product development process in green design: Materials- Manufacturing - Packaging and use - End of Life and disposal - Design for recycling - Life Cycle Assessment (LCA), and Eco-design tools - Environmental management systems, and International standards - Eco-design in electronics industry.

UNIT – V CASE STUDIES

Q

Reliability of green electronics systems, Reuse and recycle of End-of-Life(EOL) electrical and electronic equipment for effective waste management – Introduction of Green Supply Chain, and Modeling green products from Supply Chain point of view - A life-cycle assessment for eco-design of Cathode Ray Tube Recycling.

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to

- 1. Get concise awareness of standards and legislation of modern electronic manufacturing for green environment.
- 2. Explain the conventional electronic processing and lead free electronic manufacturing techniques.
- 3. Realize the assembly process and the need of recycle of electronics
- 4. Use reliability and product life cycle estimation tools for electronic manufacturing.
- 5. Validate the green electronic manufacturing procedures in applications.

TEXT BOOKS:

- 1. Green Supply Chain Management, by CharisiosAchillas ,Dionysis D. Bochtis , DimitriosAidonis, Routledge; 1st edition (16 November 2018), ISBN-10 : 1138644617
- 2. Sammy G. Shina, Green Electronics Design and Manufacturing, McGraw Hill., 2008.

- 1. David Austen, Green Electronic Morning, Ingleby Gallery, 2006.
- 2. John Hu. Mohammed Ismail, CMOS High Efficiency on Chip Power Management, Springer Publications 4th edition, 2011.
- 3. Yuhang yang and Maode Ma, Green Communications and Networks, Springer Publication., 2014.
- 4. Sanka Ganesan, Michael Pecht, Lead free Electronics, John Wiley & Sons, 2006.
- 5. Charles A. Harper, Electronic Materials and Processes Hand book, McGraw-Hill, 2010.
- 6. Sammy G. Shina, Green Electronics Design and Manufacturing, McGraw Hill., 2008.

60						Р	0							PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	1	2				2		1		3	1	1	2	2
2	1	1	2				2		1		3	1	1	2	2
3	1	1	2				2		1		3	1	1	2	2
4	1	1	2				2		1		3	1	1	2	2
5	1	1	2				2		1		3	1	1	2	2
			-	Lo	ow (1)	: M	edium	(2):	Hid	ah (3)					

OBJECTIVE:

- Develop an ability to perform the role of a materials manager in an organization.
- Shall be able to improve due date performance through use of MRP techniques with in capacity constraints.
- Shall be able to analyze the inventory situation of a company and suggest improvements.
- To lead the teams for effective decision making and coordinate to effect purchase at minimum cost.
- Shall be able to manage the activities of warehouse manager in a scientific manner.

UNIT I INTRODUCTION

9

Operating environment-aggregate planning-role, need, strategies, costs techniques, approaches-master scheduling – manufacturing planning and control system-manufacturing resource planning-enterprise resource planning-making the production plan

UNIT II MATERIALS PLANNING

9

Materials requirements planning – bill of materials – resource requirement planning – manufacturing resource planning – capacity management – scheduling orders-production activity control - codification.

UNIT III INVENTORY MANAGEMENT

9

Policy Decisions— Objectives-control -Retail Discounting Model, Newsvendor Model; EOQ and EBQmodels for uniform and variable demand With and without shortages - Quantity discount models. Probabilistic inventory models.

UNIT IV PURCHASING MANAGEMENT

9

Establishing specifications – selecting suppliers – price determination – forward buying – mixed buying strategy – price forecasting – buying seasonal commodities –purchasing under uncertainty – demand management – price forecasting-purchasing under uncertainty – purchasing of capital equipment – international purchasing

UNITY WAREHOUSE MANAGEMENT

9

Warehousing functions — types - Stores management-stores systems and procedures-incomingmaterials control-stores accounting and stock verification-Obsolete, surplus and scrap-value analysis - material handling-transportation and traffic management - operational efficiency — productivity — cost effectiveness —performance measurement

TOTAL:45PERIODS

OUTCOME :

CO1: Understand the scope and importance of materials management function in an organisation

CO2: Develop overall MaterialsRequirementsPlan

CO3: Apply various inventory controlling techniques into practice

CO4: Recommend appropriate Purchasing strategy for different category of items

CO5: Analyzing the activities Build effective warehouse management systems

TEXTBOOK

- 1. J.R.Tony Arnold, Stephen N. Chapman, Lloyd M. Clive, Materials Management, Pearson,
- 2. P.Gopalakrishnan, Purchasingand Materials Management, TataMcGrawHill, 2012

REFERENCES

- 1. A.K. Chitale and R.C. Gupta, Materials Management, Text and Cases, PHI Learning,2ndEdition,2006
- 2. A.K. Datla. Materials Management, Procedure, Textand Cases. PHI Learning, 2nd Edition, 2006
- 3. Ajay K Garg, Production and Operations Management, Tata McGraw Hill, 2012
- 4. Ronald H. Ballou and Samir K. Srivastava, Business Logistics and Supply Chain Management, Pearson education, Fifth Edition
- 5. S.N. Chary, Production and Operations Management, Tata McGrawHill,2012

CO's-PO's & PSO's MAPPING

CO's			PO's	1									PS	O's	
CO S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		3					1	1	1	2	2	2	1		
2	2	2	3	2										2	2
3	2	2	3	2										2	2
4		2	3	2		1	2	2	2	2	2	2		2	2
5	2						2	2	2	2	2	2		2	2
AVg.	2	2.5	3	2		1	1.6	1.6	1.6	2	2	2	1	2	2

IE3002 COMPUTATIONAL METHODS AND ALGORITHMS LTPC

OBJECTIVES

- Able to understand the concept of object oriented programming.
- Understand the the basic concepts of algorithms various algorithm design techniques for developing algorithms
- Discuss about various advanced topics on algorithms.
- Understand the complexity of Algorithms
- Understand various searching, sorting and optimisation algorithms

REVIEW OF A LANGUAGE UNIT I

Review of C/C++- writing and debugging large programs – Controlling numerical errors.

UNIT II **ALGORITHM DESIGN METHODS**

Greedy-Divide and conquer-Backtracking-Branch & bound-Heuristics-Metaheuristics

UNIT III BASIC TOOLS

Structuredapproach–Networks–Trees–Datastructures

COMPUTATIONAL PERFORMANCE

Timecomplexity-Spacecomplexity-Algorithmcomplexity

UNIT V APPLICATIONS

Sorting-Searching-Networks-Scheduling-Optimizationmodels-IEapplications

TOTAL: 45 PERIODS

3 0 0 3

9

9

9

9

OUTCOME:

CO1: Use the benefits of object oriented design and understand when it is an appropriate methodology to use.

CO2: Design object oriented solutions for small systems involving multiple objects.

CO3: To apply knowledge of computing and mathematics to algorithm design

CO4: To analyze a problem and identify the computing requirements appropriate for its solution

CO5: To design, implement, and evaluate an algorithm to meet desired needs

CO's-PO's & PSO's MAPPING

CO's			PO's	;									PS	O's	
CUS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2											1	2	
2	2	2												2	
3	2	2	2	2		2									2
4	2	2	2	2	2							1			
5	2	2	2	2	2							2			2
AVg.	2	2	2	2	2	2						1.5	1	2	2

TEXT BOOK:

1. Panneerselvam.R," Designand AnalysisofAlgorithms", Prentice Hallof India, 2008

REFERENCES:

- 1. GoodmanS F and HeadtruemuST, "Introduction to design of algorithms", McGraw Hill, 2002.
- 2. Sahni, "Data Structures, algorithms and applications in C++", McGraw Hill, 2003.
- 3. Dromey, R.G., "How to solve it with computers?", PHI, 2002

CIE359

MANAGEMENT ACCOUNTING AND FINANCIAL **MANAGEMENT**

C

COURSE OBJECTIVES:

- Understanding the Basics of accounting and accounting standards.
- Evaluating P&L statements, Balance sheets and other accounting statements.
- Learn and apply the various cost accounting methods.
- Study the various cost control procedures.
- Sketch and prepare a budget and make investment decision

UNIT I INTRODUCTION

Basics of accounting - Management Accounting - Financial accounting - cost accounting comparison of Financial accounting, cost accounting and management Accounting generally accepted Accounting principles – Accounting standards – Accounting cycle.

FINANCIAL ACCOUNTING **UNIT II**

Salient features of Balance Sheet and Profit and Loss statement, cash flow and Fund flow analysis(Elementary), working capital management, ratio analysis - Depreciation.

UNIT III COST ACCOUNTING

Cost accounting systems: Job Costing, process costing, allocation of overheads, Activity basedcosting, variance analysis – marginal costing – Break even analysis.

UNIT IV BUDGETING

9

Requirements for a sound budget, fixed budget – preparation of sales and production budget, flexiblebudgets, zero based budgets and budgetary control.

UNIT V FINANCIAL MANAGEMENT

g

TOTAL: 45 PERIODS

Investment decisions – Investment appraisal techniques – payback period method, accounting rate of return, net present value method, internal rate of return and profitability index method-cost of capital

COURSE OUTCOMES:

Upon successful completion of the course,

- students will acquire the ability to understand the basic concepts of accounting
- students will acquire the ability to prepare and analyze the financial statements
- students will acquire the ability to comprehend nuances involved in costing
- students will acquire the ability to analyse draft budgets
- students will acquire the ability to make sound investment decisions.

TEXT BOOKS:

- 1. Khan. M.Y. & P.J. Jain, "Management Accounting", Tata McGraw Hill, seventh 2011.
- 2. Narayanaswamy. R., "Financial Accounting A Managerial Perspective", PHI Learning, New Delhi, 2011.
- 3. James, C. Van Horne, "Fundamental of Financial Management", Pearson Education, 2012

REFERENCES:

- 1. Jan Williams, "Financial and Managerial Accounting –The basis for business decisions", Tata McGraw Hill. 2010.
- 2. Horngren, Surdem, Stratton, Burgstahler, Schatzberg, "Introduction to Management Accounting", PHI Learning, 2011.

CO's			PO'	S									PS	O's	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3												3		
2				1	2				3		3				2
3											3		3		2
4			3								3		2		
5			2								3		2		3
AVg.			2.5	1	2				3		3		2.5		2.3

9

COURSE OBJECTIVES:

- Classify and Recognize different robots and its specifications.
- Identify the appropriate drives and grippers required based on application.
- Specify the sensors for particular application.
- Control various robot links using kinematic equations.
- Perform a justification check before implementation of robots in industry.

UNIT I FUNDAMENTALS OF ROBOT

q

Robot Definition – Robot Anatomy – Co-ordinate Systems, Work Envelope, types and classification – Specifications – Pitch, Yaw, Roll, Joint Notations, Speed of Motion, Pay Load – Robot Parts and Their Functions – Need for Robots – Different Applications.

UNIT II ROBOT DRIVE SYSTEMS AND END EFFECTORS

9

Pneumatic Drives – Hydraulic Drives – Mechanical Drives – Electrical Drives – D.C. Servo Motors, Stepper Motor, A.C. Servo Motors – Salient Features, Applications and Comparison of all these Drives. End Effectors – Grippers – Mechanical Grippers, Pneumatic and Hydraulic Grippers, Magnetic Grippers, Vacuum Grippers; Two Fingered and Three Fingered Grippers; Internal Grippers and External Grippers; Selection and Design Considerations.

UNIT III SENSORS AND MACHINE VISION

9

Sensory Devices - Non optical - Position sensors - Optical position sensors - Velocity sensors - Proximity sensors - Contact and noncontact type - Tactile and slip sensors - Force and torque sensors- Introduction to Image Processing

UNIT IV ROBOT KINEMATICS AND ROBOT PROGRAMMING

9

Forward Kinematics and Reverse Kinematics of Manipulators with Two, Three Degrees of Freedom (In 2 Dimensional) - Homogeneous Transformation- D-H Representation of forward kinematics. Teach Pendant Programming, Lead through programming, Robot programming Languages – VAL Programming – Motion Commands, Sensor Commands, End effecter commands, and Simple programs.

UNIT V ROBOT CELL DESIGN, CONTROL AND ECONOMICS

a

Work cell control - Robot and machine Interface - Robot cycle time analysis - Economic analysis of robots - Pay back method, EUAC method, Rate of return method.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: Able to identify the type of robot required for applications.

CO2: Able to suggest a suitable robot drive, gripper and sensors required for particular application. CO3: Perform selection of sensor for a particular task.

CO4: Able to analyse robot arm kinematics and understand simple programs.

CO5: Able to analyse the robot cycle time and economics of robot implementation.

CO's-PO's & PSO's MAPPING

CO's			PO's										PSC)'s	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	3		1									1	2	2
2	2	3		1							2				
3	2	3		1							2		1		1
4	1	3		3									2	1	1
5	1	3		2							3				
AVg.	1.6	3		1.6							2.33		1.33	1.5	1.33

TEXT BOOK:

1. M.P.Groover, "Industrial Robotics – Technology, Programming and Applications", second Edition Tata McGraw-Hill, 2012.

REFERENCES:

- 1. Fu.K.S. Gonzalz.R.C., and Lee C.S.G., "Robotics Control, Sensing, Vision and Intelligence", McGraw-Hill Book Co., 1987.
- 2. Janakiraman.P.A., "Robotics and Image Processing", Tata McGraw-Hill, 1995.
- 3. Richard D. Klafter., Thomas A. Chmielewski, Michael Negin, "Robotic Engineering: An Integrated Approach", PHI.,1993.
- 4. SaeedB.Niku., "Introduction to Robotics: Analysis, Control, Applications", PHI, 2011.
- 5. YoramKoren, "Robotics for Engineers", McGraw-Hill Book Co., 1992.

CIE360

DESIGN THINKING AND INNOVATION

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To understand the basic concepts of process of design
- To explain the concept tof design thinking for product and service development
- To explain the fundamental concept of innovation and designthinking
- To discuss the methods of implementing design thinking in the realworld.
- To apply the concepts of design thiking workshop

UNIT I PROCESS OF DESIGN

g

Understanding Design thinking - Shared model in team-based design - Theory and practice in Design thinking - Explore presentation signers across globe - MVP or Prototyping.

UNIT II TOOLS FOR DESIGN THINKING

9

Real-Time design interaction capture and analysis – Enabling efficient collaboration in digital space – Empathy for design – Collaboration in distributed Design

UNIT III DESIGN THINKING IN IT

9

Design Thinking to Business Process modelling – Agile in Virtual collaboration environment – Scenariobased Prototyping

UNIT I V DT FOR STRATEGIC INNOVATIONS

9

Growth – Story telling representation – Strategic Foresight - Change – Sense Making - Maintenance Relevance – Value redefinition - Extreme Competition – experience design - Standardization – Humanization - Creative Culture – Rapid prototyping, Strategy and Organization – Business Model design.

UNIT V DESIGN THINKING WORKSHOP

9

Design Thinking Work shop Empathize, Design, Ideate, Prototype and Test

TOTAL = 45 PERIODS

COURSE OBJECTIVES

CO1	Appreciate various design process procedure
CO2	Generate and develop design ideas through different technique
CO3	Identify the significance of reverse Engineering to Understand
	Products
CO4	Draw technical drawing for design ideas
CO5	Apply the concepts of design thinking workshop

CO's-PO's & PSO's MAPPING

CO's		PO's													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1			3					2							3
2			3					3							
3			2					2					2		
4			3					3						2	
5			2					2							
AVg.			2.6					2.4					2	2	3

TEXT BOOKS:

- 1. John.R.Karsnitz, Stephen O'Brien and John P. Hutchinson, "Engineering Design", Cengage learning (International edition) Second Edition, 2013.
- 2. Roger Martin, "The Design of Business: Why Design Thinking is the Next Competitive Advantage". Harvard Business Press. 2009.
- 3. Hasso Plattner, Christoph Meinel and Larry Leifer (eds), "Design Thinking: Understand Improve Apply", Springer, 2011
- 4. Idris Mootee, "Design Thinking for Strategic Innovation: What They Can't Teach You at Businessor Design School", John Wiley & Sons 2013.

REFERENCES:

- 1. Yousef Haik and Tamer M.Shahin, "Engineering Design Process", CengageLearning, Second Edition, 2011.
- 2. Book Solving Problems with Design Thinking Ten Stories of What Works (Columbia Business School Publishing) Hardcover 20 Sep 2013 by Jeanne Liedtka (Author), Andrew King (Author), Kevin Bennett (Author).

CIE361 PRODUCTIVITY MANAGEMENT AND RE-ENGINEERING L T P C 3 0 0 3

OBJECTIVES:

- To understand the basic concepts of productivity
- To Measure and evaluate productivity
- To Plan and implement various productivity techniques.
- To apply the concepts of Reengineer the process for improving the productivity
- To analyse BPR tools for improving the productivity.

UNIT I INTRODUCTION

9

Basic concept and meaning of Productivity – Significance of Productivity – Factors affecting Productivity – Productivity cycle, Scope of Productivity Engineering and Management.

UNIT II PRODUCTIVITY MEASUREMENT AND EVALUATION 9

Productivity measurement in International, National and Industrial level – Total Productivity Model – Productivity measurement in Manufacturing and Service sectors – Performance Objective Productivity (POP) model – Need for Productivity Evaluation – Evaluation Methodology.

UNIT III PRODUCTIVITY PLANNING AND IMPLEMENTATION

Need for Productivity Planning – Short term and long term productivity planning – Productivity improvement approaches, Principles - Productivity Improvement techniques – Technology based, Material based, Employee based, Product based techniques – Managerial aspects of Productivity Implementation schedule, Productivity audit and control.

UNIT IV REENGINEERING PROCESS

9

Definition, Fundamentals of process reengineering – Principles, Methodology and guidelines for Organization Transformation, DSMCQ and PMP organization Transformation models – Process Improvement Models like PMI, Edosomwan, LMICIP and NPRDC Models.

UNIT V BPR TOOLS AND IMPLEMENTATION

۵

Analytical and Process Tools and Techniques - Role of Information and Communication Technology in BPR – Requirements and steps in BPR Implementation – Case studies.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

The Student must be able to:

CO1: Understanding the basic concepts of productivity

CO2: Measure and evaluate productivity

CO3: Plan and implement various productivity techniques. CO4: Reengineer the process for improving the productivity CO5: Implement BPR tools for improving the productivity.

CO's-PO's & PSO's MAPPING

CO's		PO's													PSO's		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	2								1			1	2	-	-		
2	2	2		2						2		2	-	-	-		
3	3	3	2	1					1			2	1	-	-		
4	2	3		2	2		2	2	3	2	3	2	3	-	2		
5	3	1	2	3	3				3	3	2	1	-	-	3		
AVg.	2.4	8.25	2	2	2.5		2	2	2	2.33	2.5	1.6	2	-	2.5		

TEXT BOOKS:

- 1. Sumanth, D.J, "Productivity Engineering and Management", TMH, New Delhi, 1990
- 2. Sudit, Ephraim F., "Productivity Based Management", Springer 1984

REFERENCES:

- 1. Edosomwan, J.A, "Organizational Transformation and Process re- Engineering", British Cataloging in publications, 1996.
- 2. Premvrat, Sardana, G.D. and Sahay, B.S, "Productivity Management A systems approach", Narosa Publications, New Delhi, 1998.
- 3. Rotini, Federico, Borgianni, Yuri, Cascini, Gaetano, "How to Achieve Global Success in the Changing Marketplace", Springer 2012.

IE3004

APPLIED SOFT COMPUTING

L T P C 3 0 03

OBJECTIVES

- the paradigm of soft computing techniques
- Genetic algorithms, its applications and advances.
- Neural Networks, architecture, functions and various algorithms involved.
- Fuzzy Logic, Various fuzzy systems and their functions.
- Design of hybrid methodology to solve optimization problems

UNIT I INTRODUCTION

History and Applications of Artificial Intelligence — Algorithmic versus Heuristic reasoning, Representation and Intelligence. Knowledge Representation: Rule based, Model based, Case based and hybrid systems. Logic based Abductive Inference, Stochastic approach to uncertainty.

UNIT II GENETIC ALGORITHMS

Introduction to Genetic Algorithms (GA): Reproduction, Cross over, Mutation -Applications and software — Intelligent Agents - Multiple Agents and Data Mining -Distributed Artificial Intelligence.

UNIT III NEURAL NETWORKS

9

Machine Learning Using Neural Network, Adaptive Networks - Feed forward Networks - Supervised Learning Neural Networks - Radial Basis Function Networks -Reinforcement Learning

- Unsupervised Learning Neural Networks - Adaptive Resonance architectures.

UNIT IV FUZZY LOGIC

Crisp set versus Fuzzy Sets - Operations on Fuzzy Sets - Fuzzy Arithmetic - Fuzzy Relations - Membership Functions- Fuzzy Rules and Fuzzy Reasoning - Fuzzy Inference Systems – FuzzyExpert Systems – Fuzzy Decision Making.

UNIT V HYBRID SYSTEMS

Adaptive Neuro-Fuzzy Inference Systems - Hybrid intelligence systems - Opportunistic Scheduling and Pricing Strategies for Automated Contracting in Supply Chains – AHP-ANP-SEM-DEA.

OUTCOMES

TOTAL: 45 PERIODS

CO1: Recognize the feasibility of applying a soft computing methodology for a particular problem

CO2: Apply genetic algorithms to combinatorial optimization problems

CO3: Apply neural networks to pattern classification problems

CO4: Apply fuzzy logic and reasoning to handle uncertainty and solve engineering

CO5: Design hybrid system to revise the principles of soft computing in various applications

CO's	PO's												PSO's			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3		2										3	2		
2	3		2										3	3		
3	3		2	1		2							3	3	1	
4	3		2	2	1	2							3	2	1	
5	3		2	2		2							3	2	1	
AVa.	3		2	2.5	1	2							3	27	1	

CO's-PO's & PSO's MAPPING

TEXT BOOKS:

- 1. Jyh-Shing Roger Jang, Chuen-Tsai Sun, Eiji Mizutani, "Neuro-Fuzzy and Soft Computing", Prentice-Hall of India, 2003.
- 2. George J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic-Theory and Applications", PrenticeHall, 1995.
- 3. James A. Freeman and David M. Skapura, "Neural Networks Algorithms, Applications, and Programming Techniques", Pearson Edn., 2003.

9

REFERENCES:

- 1. Mitchell Melanie, "An Introduction to Genetic Algorithm", Prentice Hall, 1998.
- 2. David E. Goldberg, "Genetic Algorithms in Search, Optimization and Machine Learning", AddisonWesley, 1997.
- 3. Jacek M. Zurada, "Introduction to Artificial Neural Systems", PWS Publishers, 1992.
- 4. Prasad, Bhanu (Ed.), Soft Computing Applications in Business Series: Studies in Fuzzinessand Soft Computing, Vol. 230, 2010
- 5. Aliev, Rafik Aziz, Fazlollahi, Bijan, Aliev, Rashad Rafik, Soft Computing and its Applications inBusiness and EconomicsSeries: Studies in Fuzziness and Soft Computing, Vol. 157, 2004

IE3005 NON TRADITIONAL MANUFACTURING

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To classify non-traditional machining processes and describe mechanical energy based non-traditional machining processes.
- To differentiate chemical and electro chemical energy based processes.
- To describe thermo-electric energy based processes
- To explain nano finishing processes.
- To introduce hybrid non-traditional machining processes and differentiate hybrid non-traditional machining processes

UNIT I INTRODUCTION AND MECHANICAL ENERGY BASEDPROCESSES 9
Introduction - Need for non-traditional machining processes - Classification of non-traditional machining processes - Applications, advantages and limitations of non-traditional machining processes - Abrasive jet machining, Abrasive water jet machining, Ultrasonic machining their principles, equipment, effect of process parameters, applications, advantages and limitations.

UNIT II CHEMICAL AND ELECTRO CHEMICAL ENERGY BASED PROCESSES 9

Principles, equipments, effect of process parameters, applications, advantages and limitations of Chemical machining, Electro-chemical machining, Electro-chemical honing, Electro-chemical grinding, Electro chemical deburring.

UNIT III THERMO-ELECTRIC ENERGY BASED PROCESSES 9

Principles, equipments, effect of process parameters, applications, advantages and limitations of Electric discharge machining, Wire electric discharge machining, Laser beam machining, Plasma arc machining, Electron beam machining, Ion beam machining.

UNIT IV NANO FINISHING PROCESSES

9

Principles, equipments, effect of process parameters, applications, advantages and limitations of Abrasive flow machining – Chemo mechanical polishing, Magnetic abrasive finishing, Magnetorheological finishing, Magneto rheological abrasive flow finishing.

UNIT V HYBRID NON-TRADITIONAL MACHINING PROCESSES 9

Introduction - Various hybrid non-traditional machining processes, their working principles, equipments, effect of process parameters, applications, advantages and limitations. Selection and comparison of different non-traditional machining processes.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of this course the students shall be able to:

CO1: Formulate different types of non-traditional machining processes andevaluate mechanical energy based non-traditional machining processes.

CO2: Illustrate chemical and electro chemical energy based processes.

CO3: Evaluate thermo-electric energy based processes.

CO4: Interpret nano finishing processes.

CO5: Analyse hybrid non-traditional machining processes and differentiate non-traditional machining processes.

CO's-PO's & PSO's MAPPING

CO's			PO's										PS	O's	
CUS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3						1			1		1	2	2	2
2	3						1			1		1	2	2	2
3	3		1		1		1			1		1	2	2	2
4	3		1		1		1			1		1	2	2	2
5	3		2		1		1			1		1	2	2	2
AVg.	3		1.33		1		1			1		1	2	2	2

TEXT BOOKS:

- 1. Adithan. M., "Unconventional Machining Processes", Atlantic, New Delhi, India, 2009. ISBN 13: 9788126910458
- 2. Anand Pandey, "Modern Machining Processes", Ane Books Pvt. Ltd., New Delhi, India, 2019.

REFERENCES:

- 1. Benedict, G.F., "Non-traditional Manufacturing Processes", Marcel Dekker Inc., New York1987. ISBN-13: 978-0824773526.
- 2. Carl Sommer, "Non-Traditional Machining Handbook", Advance Publishing., United States, 2000, ISBN-13: 978-1575373256.

VERTICAL 9: DIVERSIFIED COURSES GROUP 2

CIE362 ENTREPRENEURSHIP DEVELOPMENT

L T P C 3 0 0 3

OBJECTIVES:

- To understand of the scope of an entrepreneur
- To study the concepts of key areas of development
- To analyse the financial assistance by the institutions
- To learn the basic concepts of methods of taxation and tax benefits
- To understand the concepts of support to entrepreneur

UNIT I ENTREPRENEURSHIP

9

Entrepreneur – Types of Entrepreneurs – Difference between Entrepreneur and Intrapreneur - Entrepreneurship in Economic Growth, Factors Affecting EntrepreneurialGrowth.

UNIT II MOTIVATION

9

Major Motives Influencing an Entrepreneur – Achievement Motivation Training, Entrepreneurial Skills - Self Rating, Business Game, Thematic Appreciation Test – Stress Management, Entrepreneurship Development Programs – Need, objectives.

UNIT III BUSINESS

9

Small Enterprises – Definition, Classification – Characteristics, Ownership Structures – Project Formulation – Steps involved in setting up a Business – identifying, selecting a Good Business opportunity, Market Survey and Research, Techno Economic Feasibility Assessment – Preparation of Preliminary Project Reports – Project Appraisal – Sources of Information – Classification of Needs and Agencies.

UNIT IV FINANCING AND ACCOUNTING

9

Need – Sources of Finance, Term Loans, Capital Structure, Financial Institution, Management of working Capital, Costing, Break Even Analysis, Network Analysis Techniques of PERT / CPM – Taxation – Income Tax, Excise Duty – Sales Tax.

UNIT V SUPPORT TO ENTREPRENEURS

9

TOTAL: 45 PERIODS

Sickness in small Business – Concept, Magnitude, Causes and Consequences, Corrective Measures – Government Policy for Small Scale Enterprises – Growth Strategies in small industry – Expansion, Diversification, Joint Venture, Merger and Sub Contracting.

COURSE OUTCOMES

CO1: Understanding of the scope of an entrepreneur

CO2: Studying the concepts of key areas of development

CO3: Analyzing the financial assistance by the institutions

CO4: Learning the basic concepts of methods of taxation and tax benefits

CO5: Understanding the concepts of support to entrepreneur

CO's-PO's & PSO's MAPPING

CO's			PO's										PS	O's	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2		3	1			2					3	2	2
2		3		2				2					3		2
3	3	2		3				2					3	3	
4		3		3				2				3	2		2
5	2	2		2				2				3	2		2
AVg.	2.6	2.4		2.6				2				3	2.6	2.5	2

TEXT BOOKS:

- 1. S.S.Khanka "Entrepreneurial Development" S.Chand & Co. Ltd. Ram Nagar NewDelhi, 1999.
- 2. Kurahko & Hodgetts, "Enterprenuership Theory, process and practices", Thomson learning 6th edition.

REFERENCES:

- 1. Hisrich R D and Peters M P, "Entrepreneurship" 5th Edition Tata McGraw-Hill, 2002.
- 2. Mathew J Manimala," Enterprenuership theory at cross roads: paradigms and praxis" Dream tech 2nd edition 2006.
- 3. Rabindra N. Kanungo "Entrepreneurship and innovation", Sage Publications, New Delhi. 1998.
- 4. EDII "Faulty and External Experts A Hand Book for New Entrepreneurs", Entrepreneurship Development Institute of India, Ahmedabad, 1986.
- 5. Golam Kibria, Bhattacharyya B. and Paulo Davim J., "Non-traditional Micromachining Processes: Fundamentals and Applications", Springer International Publishing., Switzerland, 2017, ISBN:978-3-319-52008-7.
- 6. Jagadeesha T., "Non-Traditional Machining Processes", I.K. International Publishing House Pvt. Ltd., New Delhi, India, 2017, ISBN-13: 978-9385909122.
- 7. Kapil Gupta, Neelesh K. Jain and Laubscher R.F., "Hybrid Machining Processes: Perspectives on Machining and Finishing", 1st edition, Springer International Publishing., Switzerland, 2016, ISBN-13: 978-3319259208.

CIE363

DECISION SUPPORT AND INTELLIGENT SYSTEMS

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To review and clarify the fundamental terms, concepts and theories associated with Decision Support Systems, computerized decision aids, expert systems, group support systems and executive information systems.
- To discuss and develop skills in the analysis, design and implementation of computerized Decision Support Systems.
- To examine the uses of various mathematical models, heuristics and simulation as a subsystem of DSS.
- To understand that most Decision Support Systems are designed to support rather than replace decision makers and the consequences of this perspective for designing DSS.

UNIT I INTRODUCTION

q

Managerial decision making, system modeling and support - preview of the modeling process- phases of decision making process.

UNIT II ANALYSIS

9

DSS components- Data warehousing, access, analysis, mining and visualization-modeling and analysis-DSS development.

UNIT III TECHNOLOGIES

9

Group support systems- Enterprise DSS- supply chain and DSS - Knowledge management methods, technologies and tools.

UNIT IV EXPERT SYSTEMS

9

Artificial intelligence and expert systems - Concepts, structure, types - Knowledge acquisition and validation - Difficulties, methods, selection.

UNIT V SEMANTIC NETWORKS

9

Representation in logic and schemas, semantic networks, production rules and frames, inference techniques, intelligent system development, implementation and integration of management support systems.

OUTCOMES:

CO1: Make decisions in the semi structured and unstructured problem situations.

CO2: Able to apply data warehousing and data mining principles in basic applications.

CO3: Develop knowledge management systemwith simple tools and techniques.

CO4: Develop intelligent based DSS.

CO5: Able to use logical and analytical thinking

TEXT BOOKS:

- 1. Efraim Turban and Jay E Aronson, "Decision Support and Business Intelligent Systems", PHI, Eighth edition, 2010.
- 2. S S Mitra, "Decision support systems, tools and techniques", John Wiley, second 2011.

REFERENCES:

- 1. Elain Rich and Kevin Knight, "Artificial intelligence", TMH,1993.
- 2. Vicki L. Sauter, "Decision Support Systems for Business Intelligence", 2nd Edition, Wiley 2012.

CO's			PO'	S									PS	0's	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1									2			2			3
2		3	3	2									2	3	
3		3	3		3										
4		2	3			2						2		3	
5					2								2	2	2
AVg.		2.8	3	2	2.5	2			2			2	2	2.6	2.5

IE3006

AUTOMOTIVE SYSTEMS

L T P C 3 0 0 3

COURSE OBJECTIVES:

- Summarize the basics of vehicle structure and engines.
- Illustrate the various auxiliary systems associated with IC engines.
- Illustrate the various components in transmission system.
- Illustrate the different steering, braking and suspension systems.
- Classify the types and applications of sensors and actuators.

JNIT I FUNDAMENTALS

9

Introduction to automotive systems - history of automobiles - Types of automobiles, Vehicle structure: functions- type - layout of chassis, frames, body. Vehicle aerodynamics: resistance and moments. Introduction to IC engines - components - functions and materials - two and four stroke cycle engines; Technology and constructional details and principle of working of: SI, CI, CNG / LPG engines. Comparison of SI, CI, CNG & LPG engines; Performance curves -Torque vs speed; BHP vs. RPM; FHP vs. RPM; SFC vs. RPM. Hybrid vehicles and alternative fuels.

Ignition systems: construction of spark plugs, ignition methods -transistorized coil ignition system, capacitive discharge ignition system - Fuel delivery systems - construction of fuel injector, Injection methods - Multi Point Fuel Injector (MPFI) and Common Rail Fuel Injector (CRDI). Supercharging - Turbo chargers, Engine emission control by three way catalytic converter system, Emission norms (Euro and BS).

UNIT III TRANSMISSION SYSTEMS

9

Clutch-types and construction, Gear boxes- Manual and Automatic, Gear shift mechanisms, Over drive, Transfer box, Fluid flywheel, Torque converter, Propeller shaft, Slip joints, Universal joints, Differential. Front and rear axles, Hotchkiss Drive and Torque Tube Drive.

UNIT IV STEERING, BRAKES AND SUSPENSIONS

9

9

TOTAL: 45 PERIODS

Steering Control: Steering system basics, Steering geometry, steering gear box Power assisted steering. Classification of brakes, Drum brake & Disc brakes. Hydraulic and pneumatic braking system components, Antilock Braking Systems (ABS), Need of suspension system, Types of suspension, Suspension springs, Constructional details and characteristics of leaf, coil and torsion bar springs, Pneumatic suspension, Shock absorbers.

UNIT V SENSORS AND ACTUATORS IN AUTOMOTIVE SYSTEMS

Sensors - Accelerometers, Wheel speed, Brake pressure, Seat occupancy, Engine speed, Vehicle speed, Temperature, Tyre pressure and Air bag sensors etc. Actuators - Relays, Solenoids and motors in automotive technology. Active Safety Systems - ABS, Brake Assist. Passive Safety Systems - Airbag systems. Advanced Driver Assistance Systems (ADAS) principles and Applications - Lane Departure Warning, Collision Warning, Automatic Cruise Control, Pedestrian Protection, and Headlights Control.

COURSE OUTCOMES:

CO1: Acquired knowledge about the basic knowledge about vehicle structure and engines.

CO2: Acquired knowledge about IC engines and associated components in automotive technology.

CO3: Acquired knowledge about various components in transmission system.

CO4: Acquired knowledge about the different steering, braking and suspension systems.

CO5: Acquired knowledge about the role of sensors and actuators in advanced automotive systems.

CO's-PO's & PSO's MAPPING

CO's			PO's	,									PS	O's	
CO S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2									1		1		3
2	3	2									1		1	2	2
3	3	2									1				
4	3	2									1			1	
5	3	2									1		1	1	
AVg.	3	2									1		1	1.3	2.5

TEXT BOOKS:

- 1. Jain K.K. and Asthana .R.B, "Automobile Engineering" Tata McGraw Hill Publishers, NewDelhi, 2002.
- 2. Kirpal Singh, "Automobile Engineering", Vol 1 & 2, Seventh Edition, Standard Publishers, NewDelhi, 1997.

REFERENCES:

- Heinz Heisler, "Advanced Engine Technology," SAE International Publications USA, 1998.
- 2. Joseph Heitner, "Automotive Mechanics," Second Edition, East-West Press, 1999.

- 3. Martin W, Stockel and Martin T Stockle, "Automotive Mechanics Fundamentals," The Goodheart –Will Cox Company Inc, USA, 1978.
- 4. Newton, Steeds and Garet, "Motor Vehicles", Butterworth Publishers, 1989.
- 5. Robert Bosch: "Automotive Electronics Handbook", John Wiley and Sons, 2004.
- 6. Williams. B. Ribbens: "Understanding Automotive Electronics", 6th Edition, Elsevier Science, Newnes Publication, 2003.

IE3007 SOFTWARE ENGINEERING AND METHODOLOGIES

L T PC 3 0 0 3

COURSE OBJECTIVES:

- Study the basics of software development.
- Study the customer needs and apply in software development.
- Design the code and do the testing analysis.
- Develop quality tools and techniques used in software industry.
- Develop and implement the software standards.

UNIT I SOFTWARE ENGINEERING AND MODELS

Q

Software Development – Phases, Process Models (ISO & CMM) – Product Life Cycle – SoftwareLife Cycle Models.

UNIT II REQUIREMENTS ANALYSIS

_

Software requirements specifications – Structured tools for Software development– Structured analysis.

UNIT III SOFTWARE COST ESTIMATION

9

Planning a Software project – Cost Estimation and models – Software configuration managementplans – Project monitoring plans.

UNIT IV SOFTWARE DESIGN

Ç

System Design COURSE OBJECTIVES and Principles – Module level concepts – Structured design – Designmethodology – Object oriented approach – Detailed design – Coding.

UNIT V SOFTWARE TESTING

(

Software testing – Functional testing – Structural testing – Testing Process – Software QualityMetrocs – Software Quality Management – Software Productivity.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: To practice the various software modeling tools and techniques.

CO2: To study the various performance measurement tools and techniques.

CO3: Able to estimate time and cost of projects.

CO4: Able to select appropriate monitoring plan.

CO5: To study the importance of software design and software testing.

CO's-PO's & PSO's MAPPING

CO'0			PO's	S									PS	O's	
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	2	2	2								2	2	2
2	2	2	3	3	3								2	3	3
3	3	2	2	2	2								2	3	3
4	3	2	2	2	3								2	1	3
5	3	2	2	2	1										
AVg.	2.8	2	2.2	2.2	2.2								2	2.3	2.7

TEXT BOOK:

1. Mayrhausen A V, Software Engineering and Management, Academic press, 1990.

REFERENCES:

- 1. PankajJalote, An integrated approach to Software Engineering, Naross Publishing, 2018.
- 2. Pressman R S, Software Engineering, McGraw Hill, 1987.
- 3. Somavile, Software Engineering, Addison Wesley, 2011.
- 4. Stephen H. Khan, Metrics and Models and Software Quality Engineering, Addison Wesley, 2002.

CIE364 SAFETY ENGINEERING AND MANAGEMENT

L T PC 3 0 0 3

COURSE OBJECTIVES:

- Identify unsafe conditions and recognize unsafe alerts.
- Interpret the rules and regulations for safety operations.
- Capable of solving problem of accidents.
- Capable of solving the present for criticizing the present for improved safety.
- Collaborate and modify processes / procedures for safety

UNIT I INTRODUCTION

9

Evolution of modern safety concepts – Fire prevention – Mechanical hazards – Boilers, Pressure vessels, Electrical Exposure.

UNIT II CHEMICAL HAZARDS

^

Chemical exposure – Toxic materials – Radiation Ionizing and Non-ionizing Radiation – Industrial Hygiene – Industrial Toxicology.

UNIT III ENVIRONMENTAL CONTROL

9

Industrial Health Hazards – Environmental Control–IndustrialNoise-Noise measuring instruments, Control of Noise, Vibration, - Personal Protection.

UNITIV HAZARDANALYSIS

9

System Safety Analysis –Techniques – Fault Tree Analysis (FTA), Failure Modes and EffectsAnalysis (FMEA), HAZOP analysis and RiskAssessment.

UNITY SAFETYREGULATIONS

9

Explosions – Disaster management – catastrophe control, hazard control, Factories Act, SafetyregulationsProductsafety – case studies.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Students will be able to

CO1: Identify and prevent chemical, environmental mechanical, firehazard.

CO2: Collect, analyze and interpret the accidents data based on various safety techniques.

CO3: Apply proper safety techniques on safety engineering and management.

CO4: Able to perform hazard analysis.

CO5: Aid to design the system with environmental consciousness by implementing safety regulation.

CO's-PO's & PSO's MAPPING

CO's			PO's										PS	O's	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2	3	3	3								2		3
2	2	3	3	2									2		2
3	3	3											2		2
4	3	2											2		2
5	3	3	3										2		3
AVg.	2.6	2.6	3	2.5	3								2		2.6

TEXT BOOK:

1. John V. Grimaldi, "Safety Management", AITBS Publishers, 2003.

REFERENCES:

- 1. David L. Goetsch, "Occupational Safety and Health for Technologists", Engineers and Managers, Pearson Education Ltd., 5th Edition, 2005.
- 2. DeshmukhLM, "Industrial Safety Management", Tata Mc Graw-Hill Publishing Company Ltd., 2005
- 3. Safety Manual, "EDEL Engineering Consultancy", 2000.

IE3008

PRINCIPLES OF COMPUTER INTEGRATED MANUFACTURING SYSTEMS

L T P C 3 0 0 3

COURSE OBJECTIVES:

- Define flexible automation and describe its components.
- Explain the process of computer aided design.
- Relate the enablers of CAD and CAM integration and business function.
- Tell the fundamentals of integrated management systems.
- Correlate CIM with DBMS.

UNIT I GT AND FMS

9

Part families, production flow analysis, cellular manufacturing, ROC, Flexible manufacturing systems- components, FMS applications, FMS analysis – Bottleneck model.

UNIT II COMPUTER-AIDED DESIGN

9

Fundamentals of CAD – design process, manufacturing database – Computer graphics –functions, constructing the geometry, transformation, wire frame Vs solid modelling.

UNIT III MANUFACTURING SUPPORT SYSTEMS

9

Product design and CAD, CAD/CAM and CIM, Computer aided process planning- Variant and generative approaches, Concurrent engineering and design for manufacture, Lean production, Agile manufacturing.

UNIT IV FUNDAMENTALS OF COMMUNICATIONS

9

Information, Communications matrix, Computer communications, Network architecture, Tools and techniques.

UNIT V DATABASE AND CIM MANAGEMENT

9

Manufacturing data, database technology, Database management, Management of CIM – role, cost justification, expert systems

TOTAL: 45 PERIODS

COURSE OUTCOMES:

- CO1: Analyze a cellular and flexible manufacturing system for its performance measures.
- CO2: Gain knowledge in the basics of computer aided design.
- CO3: Make competitive manufacturing systems with the use of appropriate tools and techniques.
- CO4: Develop integrated manufacturing system with the required network structure and manufacturing database.
- CO5: Able to understand DBMS concepts.

TEXT BOOK:

1. Mickel P Groover, "Automation production systems and computer integrated manufacturing", PHI, second edition, 2008.

REFERENCE:

- 1. Kant Vajpayee S, "Principles of Computer-Integrated Manufacturing", PHI, 2005.
- 2. Heinz Heisler, "Advanced Engine Technology," SAE International Publications USA 1998
- 3. Joseph Heitner, "AutomotiveMechanics," Second Edition, East-West Press,1999.
- 4. Martin W, tockeland Martin T Stockle, "Automotive Mechanics Fundamentals," The Good heart Will Cox Company Inc, USA,1978.
- 5. Newton, Steeds and Garet, "Motor Vehicles", Butterworth Publishers, 1989.

CO's- PO's & PSO's MAPPING

CO's			PO's										PS	O's	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	3		3							2		3	2	2
2			3											1	2
3			3		2						2		3	3	2
4	1		3		2										1
5	2	1	3												1
AVg.	1.67	2	3	3	2						2		3		1.6

IE3009

CLOUD COMPUTING

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To understand the concept of cod computing
- To learn about the concept of cloud and utilitycomputing.
- To have knowledge on the various issues in cloudcomputing.
- To be familiar with the lead players incloud.
- To appreciate the emergence of cloud as the next generation computing paradigm.

UNIT I INTRODUCTION TOCLOUD COMPUTING

9

Introduction to Cloud Computing – Roots of Cloud Computing – Desired Features of Cloud Computing – Challenges and Risks – Benefits and Disadvantages of Cloud Computing.

UNIT II VIRTUALIZATION

9

Introduction to Virtualization Technology – Load Balancing and Virtualization – Understanding Hypervisor – Seven Layers of Virtualization – Types of Virtualization – Server, Desktop, Application Virtualization.

UNIT III CLOUD ARCHITECTURE, SERVICES AND STORAGE

9

NIST Cloud Computing Reference Architecture – Public, Private and Hybrid Clouds - laaS – PaaS – SaaS – Architectural Design Challenges – Cloud Storage.

UNIT IV RESOURCE MANAGEMENT AND SECURITYINCLOUD

9

Inter Cloud Resource Management – Resource Provisioning Methods – Security Overview – Cloud Security Challenges – Data Security – Application Security – Virtual Machine Security.

UNIT V CASE STUDIES

9

Google App Engine (GAE) – GAE Architecture – Functional Modules of GAE – Amazon Web Services (AWS) – GAE Applications – Cloud Software Environments – Eucalyptus–Open Nebula Open Stack.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

On Completion of the course, the students should be able to:

- Articulate the main concepts, key technologies, strengths and limitations of cloud computing.
- Learn the key and enabling technologies that help in the development ofcloud.
- Develop the ability to understand and use the architecture of compute and storage cloud, service and deliverymodels.
- Explain the core issues of cloud computing such as resource management and security.
- Be able to install and use current cloudtechnologies.

CO's-PO's & PSO's MAPPING

CO's						PO	's						ŀ	PSO's	
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2		3	3									3		
2	2		3	3									3	2	
3	2		3	2									3	2	
4	2		3	2		2							3	2	
5	2		3			1							3	2	1
AVg.	2		3	2		1.5							3	2	1

TEXT BOOKS:

- 1. Buyya R., Broberg J., Goscinski A., "Cloud Computing: Principles and Paradigm", First Edition, John Wiley & Sons, 2011.
- 2. Kai Hwang, Geoffrey C. Fox, Jack G. Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012.
- 3. Rittinghouse, John W., and James F. Ransome, "Cloud Computing: Implementation, Management, And Security", CRC Press, 2017.

CMF340 INDUSTRY 4.0

LTPC

COURSE OBJECTIVES:

To have systematic and comprehensive understanding on various aspects related with surface engineering of metallic components.

UNIT I INTRODUCTION

9

Introduction- Core idea of Industry 4.0 - origin - concept of industry 4.0 - Industry 4.0 - production system - current state of industry 4.0 - Technologies - How is India preparing for Industry 4.0

UNIT II A CONCEPTUAL FRAMEWORK

9

Introduction, Main Concepts and Components of Industry 4.0, State of Art, Supportive Technologies, Proposed Framework for Industry 4.0.

Introduction, Proposed Framework for Technology Roadmap, Strategy Phase, Strategy Phase, New Product and Process Development Phase.

UNIT IV ADVANCES IN ROBOTICS AND AUGMENTED REALITY

Introduction, Recent Technological Components of Robots - Advanced Sensor Technologies, Internet of Robotic Things, Cloud Robotics, and Cognitive Architecture for Cyber-Physical Robotics, Industrial Robotic Applications- Manufacturing, Maintenance and Assembly.

Role of Augmented Reality (AR) - Introduction, AR Hardware and Software Technology, Industrial Applications of AR.

UNIT V OBSTACLES AND FRAMEWORK CONDITIONS

9

Lack of A Digital Strategy alongside Resource Scarcity, Lack of standards and poor data security, Financing conditions, availability of skilled workers, comprehensive broadband infra-structure, state support, legal framework, protection of corporate data, liability, handling personal data.

TOTAL: 45 PERIODS

OUTCOMES:

- Upon the completion of this course the students will be able to
- Describe Industry 4.0 and scope for Indian Industry
- Demonstrate conceptual framework and road map of Industry 4.0
- Describe Robotic technology and Augmented reality for Industry 4.0
- Demonstrate obstacle and framework conditions for Industry 4.0

TEXT BOOKS:

- 1. Alp Ustundag and Emre Cevikcan,"Industry 4.0: Managing the Digital Transformation", Springer, 2017.
- 2. Ortiz, Jesús Hamilton, "Industry 4.0: Current Status and Future Trends", InTech Open, 2020.

REFERENCES:

- 1. Bartodziej, Christoph Jan, "The Concept Industry 4.0: An Empirical Analysis of Technologies and Applications in Production Logistics", Springer, 2017.
- 2. Klaus Schwab, "The Fourth Industrial Revolution", Currency, 2017.
- 3. Christian Schröder, "The Challenges of Industry 4.0 for Small and Medium-sized Enterprises", Friedrich-Ebert-Stiftung, 2017.

СО							РО							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	-	2	-	2	-	2	-	-	1	3	3	3	1	2
2	-	-	2	-	2	-	1	-	-	1	3	3	3	1	2
3	ı	ı	2	ı	2	ı	2	-	-	1	3	3	3	1	2
4	1	1	2	1	2	1	1	-	-	1	3	3	3	1	2
5	1	1	2	ı	2	ı	2	-	-	1	3	3	3	1	2

MANDATORY COURSES I

MX3081 INTRODUCTION TO WOMEN AND GENDER STUDIES

LTPC 3 0 0 0

COURSE OUTLINE

UNIT I CONCEPTS

Sex vs. Gender, masculinity, femininity, socialization, patriarchy, public/ private, essentialism, binaryism, power, hegemony, hierarchy, stereotype, gender roles, gender relation, deconstruction, resistance, sexual division of labour.

UNIT II FEMINIST THEORY

Liberal, Marxist, Socialist, Radical, Psychoanalytic, postmodernist, ecofeminist.

UNIT III WOMEN'S MOVEMENTS: GLOBAL, NATIONAL AND LOCAL

Rise of Feminism in Europe and America.

Women's Movement in India.

UNIT IV GENDER AND LANGUAGE

Linguistic Forms and Gender.

Gender and narratives.

UNIT V GENDER AND REPRESENTATION

Advertising and popular visual media.

Gender and Representation in Alternative Media.

Gender and social media.

TOTAL: 45 PERIODS

MX3082

ELEMENTS OF LITERATURE

LTPC 3 0 0 0

OBJECTIVE:

 To make the students aware about the finer sensibilities of human existence through an art form. The students will learn to appreciate different forms of literature as suitable modes of expressing human experience.

1. COURSE CONTENTS

Introduction to Elements of Literature

1. Relevance of literature

- a) Enhances Reading, thinking, discussing and writing skills.
- b) Develops finer sensibility for better human relationship.
- c) Increases understanding of the problem of humanity without bias.
- d) Providing space to reconcile and get a cathartic effect.

2. Elements of fiction

- a) Fiction, fact and literary truth.
- b) Fictional modes and patterns.

c) Plot character and perspective.

3. Elements of poetry

- a) Emotions and imaginations.
- b) Figurative language.
- c) (Simile, metaphor, conceit, symbol, pun and irony).
- d) Personification and animation.
- e) Rhetoric and trend.

4. Elements of drama

- a) Drama as representational art.
- b) Content mode and elements.
- c) Theatrical performance.
- d) Drama as narration, mediation and persuasion.
- e) Features of tragedy, comedy and satire.

2.READINGS:

- 1. An Introduction to the Study of English Literature, W.H. Hudson, Atlantic, 2007.
- 2. An Introduction to Literary Studies, Mario Klarer, Routledge, 2013.
- 3. The Experience of Poetry, Graham Mode, Open college of Arts with Open Unv Press, 1991.
- 4. The Elements of Fiction: A Survey, Ulf Wolf (ed), Wolfstuff, 2114.
- 5. The Elements of Drama, J.L.Styan, Literary Licensing, 2011.
- 3.1 Textbook:
- 3.2 *Reference Books:: To be decided by the teacher and student, on the basis of individual student so as to enable him or her to write the term paper.

3. OTHER SESSION:

- 4.1*Tutorials:
- 4.2*Laboratory:
- 4.3*Project: The students will write a term paper to show their understanding of a particular piece of literature

4..*ASSESSMENT:

- 5.1HA:
- 5.2Quizzes-HA:
- 5.3Periodical Examination: one
- 5.4Project/Lab: one (under the guidance of the teachers the students will take a volume of poetry, fiction or drama and write a term paper to show their understanding of it in a given context; sociological, psychological, historical, autobiographical etc.

5.5Final Exam:

TOTAL: 45 PERIODS

OUTCOME OF THE COURSE:

• Students will be able to understand the relevance of literature in human life and appreciate its aspects in developing finer sensibilities.

In this course on film appreciation, the students will be introduced broadly to the development of film as an art and entertainment form. It will also discuss the language of cinema as it evolved over a century. The students will be taught as to how to read a film and appreciate the various nuances of a film as a text. The students will be guided to study film joyfully.

Theme - A: The Component of Films

- A-1: The material and equipment
- A-2: The story, screenplay and script
- A-3: The actors, crew members, and the director
- A-4: The process of film making... structure of a film

Theme - B: Evolution of Film Language

- B-1: Film language, form, movement etc.
- B-2: Early cinema... **silent film** (Particularly French)
- B-3: The emergence of feature films: Birth of a Nation
- B-4: Talkies

Theme - C: Film Theories and Criticism/Appreciation

- C-1: Realist theory; Auteurists
- C-2: Psychoanalytic, Ideological, Feminists
- C-3: How to read films?
- C-4: Film Criticism / Appreciation

Theme – D: Development of Films

- D-1: Representative Soviet films
- D-2: Representative Japanese films
- D-3: Representative Italian films
- D-4: Representative Hollywood film and the studio system

Theme - E: Indian Films

- E-1: The early era
- E-2: The important films made by the directors
- E-3: The regional films
- E-4: The documentaries in India

READING:

A Reader containing important articles on films will be prepared and given to the students. The students must read them and present in the class and have discussion on these.

MX3084 DISASTER RISK REDUCTION AND MANAGEMENT

LTPC 3000

COURSE OBJECTIVE

- To impart knowledge on concepts related to disaster, disaster risk reduction, disaster management
- To acquaint with the skills for planning and organizing disaster response

UNIT I HAZRADS, VULNERABILITY AND DISASTER RISKS

9

Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Types of Disasters: Natural, Human induced, Climate change induced –Earthquake, Landslide, Flood, Drought, Fire etc – Technological disasters- Structural collapse, Industrial accidents, oil spills -Causes, Impacts including social,

Economic, political, environmental, health, psychosocial, etc.- Disaster vulnerability profile of India and Tamil Nadu - Global trends in disasters: urban disasters, pandemics, Complex emergencies, -, Inter relations between Disasters and Sustainable development Goals

UNIT II DISASTER RISK REDUCTION (DRR)

9

Sendai Framework for Disaster Risk Reduction, Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community Based DRR, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions / Urban Local Bodies (PRIs/ULBs), States, Centre, and other stakeholders- Early Warning System – Advisories from Appropriate Agencies.- Relevance of indigenous Knowledge, appropriate technology and Local resources.

UNIT III DISASTER MANAGEMENT

9

Components of Disaster Management – Preparedness of rescue and relief, mitigation, rehabilitation and reconstruction- Disaster Risk Management and post disaster management – Compensation and Insurance- Disaster Management Act (2005) and Policy - Other related policies, plans, programmers and legislation - Institutional Processes and Framework at State and Central Level-(NDMA –SDMA-DDMA-NRDF- Civic Volunteers)

UNIT IV TOOLS AND TECHNOLOGY FOR DISASTER MANAGEMENT

Early warning systems -Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness, – Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment. - Elements of Climate Resilient Development –Standard operation Procedure for disaster response – Financial planning for disaster Management

UNIT V DISASTER MANAGEMENT: CASE STUDIES

9

TOTAL: 45 PERIODS

Discussion on selected case studies to analyse the potential impacts and actions in the contest of disasters-Landslide Hazard Zonation: Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.- Field work-Mock drill -

TEXT BOOKS:

1 Taimpo (2016), Disaster Management and Preparedness, CRC Publications

- 2 Singh R (2017), Disaster Management Guidelines for earthquakes, Landslides, Avalanches and tsunami, Horizon Press Publications
- 3 Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423
- 4 Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. **ISBN-10**: 1259007367, **ISBN-13**: 978-1259007361]

REFERENCES

- 1. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005.
- 2. Government of India, National Disaster Management Policy, 2009.
- 3. Shaw R (2016), Community based Disaster risk reduction, Oxford University Press

COURSE OUTCOMES:

- **CO1:** To impart knowledge on the concepts of Disaster, Vulnerability and Disaster Risk reduction (DRR)
- **CO2:** To enhance understanding on Hazards, Vulnerability and Disaster Risk Assessment prevention and risk reduction
- CO3: To develop disaster response skills by adopting relevant tools and technology
- CO4: Enhance awareness of institutional processes for Disaster response in the country and

CO5: Develop rudimentary ability to respond to their surroundings with potential Disaster response in areas where they live, with due sensitivity

CO's - PO's & PSO's MAPPING

CO's	PO's												PSO's	S	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	2	3	-	-	2	2	-	-	2	-	2	-	1
2	3	3	3	3	-	-	2	1	-	-	2	-	2	-	1
3	3	3	3	3	-	-	2	2	-	-	-	-	2	-	1
4	3	3	2	3	-	-	2	1	-	-	2	-	2	-	1
5	3	3	2	3	-	-	2	2	-	-	2	-	3	-	1
AVG	3	3	3	3	-	-	2	2	-	-	2	-	2	-	1

MANDATORY COURSES II

MX3085 WELL-BEING WITH TRADITIONAL PRACTICES-YOGA, AYURVEDA SIDDHA L

LT PC 3 0 00

COURSE OBJECTIVES:

- To enjoy life happily with fun filled new style activities that help to maintain health also
- To adapt a few lifestyle changes that will prevent many health disorders
- To be cool and handbill every emotion very smoothly in every walk of life
- To learn to eat cost effective but healthy foods that are rich in essential nutrients
- To develop immunity naturally that will improve resistance against many health disorders

UNIT I HEALTH AND ITS IMPORTANCE

2+4

Health: Definition - Importance of maintaining health - More importance on prevention than treatment

Ten types of health one has to maintain - Physical health - Mental health - Social health - Financial health - Emotional health - Spiritual health - Intellectual health - Relationship health - Environmental health - Occupational/Professional heath.

Present health status - The life expectancy-present status - mortality rate - dreadful diseases - Non-communicable diseases (NCDs) the leading cause of death - 60% - heart disease - cancer - diabetes - chronic pulmonary diseases - risk factors - tobacco - alcohol - unhealthy diet - lack of physical activities.

Types of diseases and disorders - Lifestyle disorders - Obesity - Diabetes - Cardiovascular diseases - Cancer - Strokes - COPD - Arthritis - Mental health issues.

Causes of the above diseases / disorders - Importance of prevention of illness - Takes care of health - Improves quality of life - Reduces absenteeism - Increase satisfaction - Saves time

Simple lifestyle modifications to maintain health - Healthy Eating habits (Balanced diet according to age) Physical Activities (Stretching exercise, aerobics, resisting exercise) - Maintaining BMI-Importance and actions to be taken

UNIT II DIET 4+6

Role of diet in maintaining health - energy one needs to keep active throughout the day - nutrients one needs for growth and repair - helps one to stay strong and healthy - helps to prevent diet-related

illness, such as some cancers - keeps active and - helps one to maintain a healthy weight - helps to reduce risk of developing lifestyle disorders like diabetes – arthritis – hypertension – PCOD – infertility – ADHD – sleeplessness -helps to reduce the risk of heart diseases - keeps the teeth and bones strong.

Balanced Diet and its 7 Components - Carbohydrates – Proteins – Fats – Vitamins – Minerals - Fibre and Water.

Food additives and their merits & demerits - Effects of food additives - Types of food additives - Food additives and processed foods - Food additives and their reactions

Definition of BMI and maintaining it with diet

Importance - Consequences of not maintaining BMI - different steps to maintain optimal BM

Common cooking mistakes

Different cooking methods, merits and demerits of each method

UNIT III ROLE OF AYURVEDA & SIDDHA SYSTEMS IN MAINTAINING HEALTH 4+4

AYUSH systems and their role in maintaining health - preventive aspect of AYUSH - AYUSH as a soft therapy.

Secrets of traditional healthy living - Traditional Diet and Nutrition - Regimen of Personal and Social Hygiene - Daily routine (Dinacharya) - Seasonal regimens (Ritucharya) - basic sanitation and healthy living environment - Sadvritta (good conduct) - for conducive social life.

Principles of Siddha & Ayurveda systems - Macrocosm and Microcosm theory - Pancheekarana Theory / (Five Element Theory) 96 fundamental Principles - Uyir Thathukkal (Tri-Dosha Theory) - Udal Thathukkal

Prevention of illness with our traditional system of medicine

Primary Prevention - To decrease the number of new cases of a disorder or illness - Health promotion/education, and - Specific protective measures - Secondary Prevention - To lower the rate of established cases of a disorder or illness in the population (prevalence) - Tertiary Prevention - To decrease the amount of disability associated with an existing disorder.

UNIT IV MENTAL WELLNESS

3+4

Emotional health - Definition and types - Three key elements: the subjective experience - the physiological response - the behavioral response - Importance of maintaining emotional health - Role of emotions in daily life -Short term and long term effects of emotional disturbances - Leading a healthy life with emotions - Practices for emotional health - Recognize how thoughts influence emotions - Cultivate positive thoughts - Practice self-compassion - Expressing a full range of emotions.

Stress management - Stress definition - Stress in daily life - How stress affects one's life - Identifying the cause of stress - Symptoms of stress - Managing stress (habits, tools, training, professional help) - Complications of stress mismanagement.

Sleep - Sleep and its importance for mental wellness - Sleep and digestion. **Immunity -** Types and importance - Ways to develop immunity

UNIT V YOGA 2+12

Definition and importance of yoga - Types of yoga - How to Choose the Right Kind for individuals according to their age - The Eight Limbs of Yoga - Simple yogasanas for cure and prevention of health disorders - What yoga can bring to our life.

TOTAL: 45 PERIODS

TEXT BOOKS:

- Nutrition and Dietetics Ashley Martin, Published by White Word Publications, New York, NY 10001, USA
- 2. Yoga for Beginners_ 35 Simple Yoga Poses to Calm Your Mind and Strengthen Your Body, by Cory Martin, Copyright © 2015 by Althea Press, Berkeley, California

REFERENCES:

- 1. WHAT WE KNOW ABOUT EMOTIONAL INTELLIGENCE How It Affects Learning, Work, Relationships, and Our Mental Health, by Moshe Zeidner, Gerald Matthews, and Richard D. Roberts A Bradford Book, The MIT Press, Cambridge, Massachusetts, London, England
- The Mindful Self-Compassion Workbook, Kristin Neff, Ph.D Christopher Germer, Ph.D, Published by The Guilford Press A Division of Guilford Publications, Inc.370 Seventh Avenue, Suite 1200, New York, NY 10001
 - 1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4799645/
 - 2. Simple lifestyle modifications to maintain health https://www.niddk.nih.gov/health-information/diet-nutrition/changing-habits-better-health#:~:text=Make%20your%20new%20healthy%20habit,t%20have%20time%20to%20cook.
 - 3. **Read more**: https://www.legit.ng/1163909-classes-food-examples-functions.html
 - 4. https://www.yaclass.in/p/science-state-board/class-9/nutrition-and-health-5926
 - 5. **Benefits of healthy eating** https://www.cdc.gov/nutrition/resources-publications/benefits-of-healthy-eating.html
 - 6. **Food additives** https://www.betterhealth.vic.gov.au/health/conditionsandtreatments/food-additives
 - 7. **BMI** https://www.hsph.harvard.edu/nutritionsource/healthy-weight/ https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations
 - 8. Yoga https://www.healthifyme.com/blog/types-of-yoga/
 https://www.healthifyme.com/blog/types-of-yoga/
 https://yogamedicine.com/guide-types-yoga-styles/
 <a href="https://wikaspedia.in/health/ayush/ayurveda-1/concept-of-healthy-living-in-ayurveda-1/concept-o
 - 9. **Siddha**: http://www.tkdl.res.in/tkdl/langdefault/Siddha/Sid Siddha Concepts.asp
 - 10. CAM: https://www.hindawi.com/journals/ecam/2013/376327/
 - 11. Preventive herbs: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847409/

COURSE OUTCOMES:

After completing the course, the students will be able to:

- Learn the importance of different components of health
- · Gain confidence to lead a healthy life
- Learn new techniques to prevent lifestyle health disorders
- Understand the importance of diet and workouts in maintaining health

UNIT - I CONCEPTS AND PERSPECTIVES

Meaning of History

Objectivity, Determinism, Relativism, Causation, Generalization in History; Moral judgment in history Extent of subjectivity, contrast with physical sciences, interpretation and speculation, causation verses evidence, concept of historical inevitability, Historical Positivism.

Science and Technology-Meaning, Scope and Importance, Interaction of science, technology & society, Sources of history on science and technology in India.

UNIT-II HISTORIOGRAPHY OF SCIENCE AND TECHNOLOGY IN INDIA

Introduction to the works of D.D. Kosambi, Dharmpal, Debiprasad Chattopadhyay, Rehman, S. Irfan Habib, Deepak Kumar, Dhruv Raina, and others.

UNIT-III SCIENCE AND TECHNOLOGY IN ANCIENT INDIA

Technology in pre-historic period
Beginning of agriculture and its impact on technology
Science and Technology during Vedic and Later Vedic times
Science and technology from 1st century AD to C-1200.

UNIT-IV SCIENCE AND TECHNOLOGY IN MEDIEVAL INDIA

Legacy of technology in Medieval India, Interactions with Arabs
Development in medical knowledge, interaction between Unani and Ayurveda and alchemy
Astronomy and Mathematics: interaction with Arabic Sciences
Science and Technology on the eve of British conquest

UNIT-V SCIENCE AND TECHNOLOGY IN COLONIAL INDIA

Science and the Empire Indian response to Western Science Growth of techno-scientific institutions

UNIT-VI SCIENCE AND TECHNOLOGY IN A POST-INDEPENDENT INDIA

Science, Technology and Development discourse Shaping of the Science and Technology Policy Developments in the field of Science and Technology Science and technology in globalizing India

Social implications of new technologies like the Information Technology and Biotechnology

TOTAL: 45 PERIODS

MX3087 POLITICAL AND ECONOMIC THOUGHT FOR A HUMANE SOCIETY LTPC

3 0 0 0

Pre-Requisite: None. (Desirable: Universal Human Values 1, Universal Human Values 2)

OBJECTIVES:

• This course will begin with a short overview of human needs and desires and how different political-economic systems try to fullfill them. In the process, we will end with a critique of different systems and their implementations in the past, with possible future directions.

COURSE TOPICS:

Considerations for humane society, holistic thought, human being's desires, harmony in self, harmony in relationships, society, and nature, societal systems. (9 lectures, 1 hour each)

(Refs: A Nagaraj, M K Gandhi, JC Kumarappa)

Capitalism – Free markets, demand-supply, perfect competition, laissez-faire, monopolies, imperialism. Liberal democracy. **(5 lectures)**

(Refs: Adam smith, J S Mill)

Fascism and totalitarianism. World war I and II. Cold war. (2 lectures)

Communism – Mode of production, theory of labour, surplus value, class struggle, dialectical materialism, historical materialism, Russian and Chinese models.

(Refs: Marx, Lenin, Mao, M N Roy) (5 lectures)

Welfare state. Relation with human desires. Empowered human beings, satisfaction. (3 lectures)

Gandhian thought. Swaraj, Decentralized economy & polity, Community. Control over one's lives. Relationship with nature. **(6 lectures)**

(Refs: M K Gandhi, Schumacher, Kumarappa)

Essential elements of Indian civilization. (3 lectures)

(Refs: Pt Sundarlal, R C Mazumdar, Dharampal)

Technology as driver of society, Role of education in shaping of society. Future directions. (4 lectures) (Refs: Nandkishore Acharya, David Dixon, Levis Mumford)

Conclusion (2 lectures)

Total lectures: 39

Preferred Textbooks: See Reference Books

Reference Books: Authors mentioned along with topics above. Detailed reading list will be

provided.

GRADING:

Mid sems30End sem20Home Assign10Term paper40

TOTAL: 45 PERIODS

OUTCOME:

• The students will get an understanding of how societies are shaped by philosophy, political and economic system, how they relate to fulfilling human goals & desires with some case studies of how different attempts have been made in the past and how they have fared.

OBJECTIVE:

The objective of the course is to provide an understanding of the state, how it works through its main organs, primacy of politics and political process, the concept of sovereignty and its changing contours in a globalized world. In the light of this, an attempt will be made to acquaint the students with the main development and legacies of national movement and constitutional development in India, reasons for adopting a Parliamentary-federal system, the broad philosophy of the Constitution of India and the changing nature of Indian Political System. Challenges/ problems and issues concerning national integration and nation-building will also be discussed in the contemporary context with the aim of developing a future vision for a better India.

TOPICS:

Understanding the need and role of State and politics.

Development of Nation-State, sovereignty, sovereignty in a globalized world.

Organs of State – Executive, Legislature, Judiciary. Separation of powers, forms of government-unitary-federal, Presidential-Parliamentary, The idea of India.

1857 and the national awakening.

1885 Indian National Congress and development of national movement – its legacies. Constitution making and the Constitution of India. Goals, objective and philosophy. Why a federal system? National integration and nation-building.

Challenges of nation-building – State against democracy (Kothari)
New social movements.
The changing nature of Indian Political System, the future

The changing nature of Indian Political System, the future scenario. What can we do?

OUTCOME OF THE COURSE:

It is expected that this course will make students aware of the theoretical aspect of the state, its organs, its operationalization aspect, the background and philosophy behind the founding of the present political system, broad streams and challenges of national integration and nation-building in India. It will equip the students with the real understanding of our political system/ process in correct perspective and make them sit up and think for devising ways for better participation in the system with a view to making the governance and delivery system better for the common man who is often left unheard and unattended in our democratic setup besides generating a lot of dissatisfaction and difficulties for the system.

SUGGESTED READING:

- i. Sunil Khilnani, The Idea of India. Penguin India Ltd., New Delhi.
- ii. Madhav Khosla, The Indian Constitution, Oxford University Press. New Delhi, 2012.
- iii. Brij Kishore Sharma, Introduction to the Indian Constitution, PHI, New Delhi, latest edition.
- iv. Sumantra Bose, Transforming India: Challenges to the World's Largest Democracy, Picador India, 2013.
- v. Atul Kohli, Democracy and Discontent: India's Growing Crisis of Governability, Cambridge University Press, Cambridge, U. K., 1991.
- vi. M. P. Singh and Rekha Saxena, Indian Politics: Contemporary Issues and Concerns, PHI, New Delhi, 2008, latest edition.
- vii. Rajni Kothari, Rethinking Democracy, Orient Longman, New Delhi, 2005.

TOTAL: 45 PERIODS

OBJECTIVES

- To Understand the Introduction and basic Terminologies safety.
- To enable the students to learn about the Important Statutory Regulations and standards.
- To enable students to Conduct and participate the various Safety activities in the Industry.
- To have knowledge about Workplace Exposures and Hazards.
- To assess the various Hazards and consequences through various Risk Assessment Techniques.

UNIT I SAFETY TERMINOLOGIES

Hazard-Types of Hazard- Risk-Hierarchy of Hazards Control Measures-Lead indicators- lag Indicators-Flammability- Toxicity Time-weighted Average (TWA) - Threshold LimitValue (TLV) - Short Term Exposure Limit (STEL)- Immediately dangerous to life or health (IDLH)- acute and chronic Effects- Routes of Chemical Entry-Personnel Protective Equipment- Health and Safety Policy-Material Safety Data Sheet MSDS

UNIT II STANDARDS AND REGULATIONS

Indian Factories Act-1948- Health- Safety- Hazardous materials and Welfare- ISO 45001:2018 occupational health and safety (OH&S) - Occupational Safety and Health Audit IS14489:1998-Hazard Identification and Risk Analysis- code of practice IS 15656:2006

UNIT III SAFETY ACTIVITIES

Toolbox Talk- Role of safety Committee- Responsibilities of Safety Officers and Safety Representatives- Safety Training and Safety Incentives- Mock Drills- On-site Emergency Action Plan- Off-site Emergency Action Plan- Safety poster and Display- Human Error Assessment

UNIT IV WORKPLACE HEALTH AND SAFETY

Noise hazard- Particulate matter- musculoskeletal disorder improper sitting poster and lifting Ergonomics RULE & REBA- Unsafe act & Unsafe Condition- Electrical Hazards- Crane Safety-Toxic gas Release

UNIT V HAZARD IDENTIFICATION TECHNIQUES

Job Safety Analysis-Preliminary Hazard Analysis-Failure mode and Effects Analysis- Hazard and Operability- Fault Tree Analysis- Event Tree Analysis Qualitative and Quantitative Risk Assessment-Checklist Analysis- Root cause analysis- What-If Analysis- and Hazard Identification and Risk Assessment

Course outcomes on completion of this course the student will be able:

- Understand the basic concept of safety.
- Obtain knowledge of Statutory Regulations and standards.
- Know about the safety Activities of the Working Place.
- Analyze on the impact of Occupational Exposures and their Remedies
- Obtain knowledge of Risk Assessment Techniques.

TEXTBOOKS

- 1. R.K. Jain and Prof. Sunil S. Rao Industrial Safety, Health and Environment Management Systems KHANNA PUBLISHER
- 2. L. M. Deshmukh Industrial Safety Management: Hazard Identification and Risk Control McGraw-Hill Education

REFERENCES

- 1. Frank Lees (2012) 'Lees' Loss Prevention in Process Industries.Butterworth-Heinemann publications, UK, 4th Edition.
- 2. John Ridley & John Channing (2008) Safety at Work: Routledge, 7th Edition.
- 3. Dan Petersen (2003) Techniques of Safety Management: A System Approach.
- 4. Alan Waring.(1996).Safety management system: Chapman &Hall,England

5. Society of Safety Engineers, USA

ONLINE RESOURCES

ISO 45001:2018 occupational health and safety (OH&S) International Organization for Standardization https://www.iso.org/standard/63787.html

Indian Standard code of practice on occupational safety and health audit https://law.resource.org/pub/in/bis/S02/is.14489.1998.pdf

Indian Standard code of practice on Hazard Identification and Risk Analysis IS 15656:2006 https://law.resource.org/pub/in/bis/S02/is.15656.2006.pdf

0							Pro	ogra	m O	utco	me					
Course Outcomes	Statement	PO 1	PO 2	PO 3	PO 4	PO 5					PO 10	PO 11	PO 12	PS 01	PS O2	PS O3
CO1	Understand the basic concept of safety.	3	3	3	1	1	3	2	2	3	3	1	3	3	3	3
CO2	Obtain knowledge of Statutory Regulations and standards.	2	3	2	2	1	3	2	3	3	2	1	3	3	3	3
CO3	Know about the safety Activities of the Working Place.	2	2	2	2	1	2	2	2	3	2	1	2	3	3	3
CO4	Analyze on the impact of Occupational Exposures and their Remedies	3	3	3	2	2	3	2	2	3	2	1	3	3	3	3
CO5	Obtain knowledge of Risk Assessment Techniques.	3	2	3	2	2	3	2	2	3	2	2	3	3	3	3
	Industrial safety	3	3	3	2	1	3	2	2	3	2	1	3	3	3	3

OPEN ELECTIVE I AND II

OCS351 ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FUNDAMENTALS

LTPC

2023

OBJECTIVES:

The main objectives of this course are to:

- 1. Understand the importance, principles, and search methods of Al
- 2. Provide knowledge on predicate logic and Prolog.
- 3. Introduce machine learning fundamentals
- 4. Study of supervised learning algorithms.
- 5. Study about unsupervised learning algorithms.

UNIT I INTELLIGENT AGENT AND UNINFORMED SEARCH

6

Introduction - Foundations of AI - History of AI - The state of the art - Risks and Benefits of AI - Intelligent Agents - Nature of Environment - Structure of Agent - Problem Solving Agents - Formulating Problems - Uninformed Search - Breadth First Search - Dijkstra's algorithm or uniform-cost search - Depth First Search - Depth Limited Search

UNIT II PROBLEM SOLVING WITH SEARCH TECHNIQUES

6

Informed Search - Greedy Best First - A* algorithm - Adversarial Game and Search - Game theory - Optimal decisions in game - Min Max Search algorithm - Alpha-beta pruning - Constraint Satisfaction Problems (CSP) - Examples - Map Coloring - Job Scheduling - Backtracking Search for CSP

UNIT III LEARNING

6

Machine Learning: Definitions – Classification - Regression - approaches of machine learning models - Types of learning - Probability - Basics - Linear Algebra – Hypothesis space and inductive bias, Evaluation. Training and test sets, cross validation, Concept of over fitting, under fitting, Bias and Variance - **Regression**: Linear Regression - Logistic Regression

UNIT IV SUPERVISED LEARNING

6

Neural Network: Introduction, Perceptron Networks – Adaline - Back propagation networks - **Decision Tree:** Entropy – Information gain - Gini Impurity - classification algorithm - Rule based Classification - **Naïve Bayesian classification - Support Vector Machines** (SVM)

UNIT V UNSUPERVISED LEARNING

6

Unsupervised Learning – Principle Component Analysis - **Neural Network**: Fixed Weight Competitive Nets - Kohonen Self-Organizing Feature Maps – **Clustering**: Definition - Types of Clustering – Hierarchical clustering algorithms – k-means algorithm

TOTAL: 30 PERIODS

PRACTICAL EXERCISES: 30 PERIODS Programs for Problem solving with Search

- 1. Implement breadth first search
- 2. Implement depth first search
- Analysis of breadth first and depth first search in terms of time and space
- Implement and compare Greedy and A* algorithms.

Supervised learning

- 5. Implement the non-parametric locally weighted regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs
- 6. Write a program to demonstrate the working of the decision tree based algorithm.
- 7. Build an artificial neural network by implementing the back propagation algorithm and test the same using appropriate data sets.
- 8. Write a program to implement the naïve Bayesian classifier.

Unsupervised learning

- 9. Implementing neural network using self-organizing maps
- 10. Implementing k-Means algorithm to cluster a set of data.
- 11. Implementing hierarchical clustering algorithm.

Note:

- Installation of gnu-prolog, Study of Prolog (gnu-prolog).
- The programs can be implemented in using C++/JAVA/ Python or appropriate tools can be used by designing good user interface
- Data sets can be taken from standard repositories (https://archive.ics.uci.edu/ml/datasets.html) or constructed by the students.

OUTCOMES:

- CO1: Understand the foundations of AI and the structure of Intelligent Agents
- CO2: Use appropriate search algorithms for any Al problem
- CO3: Study of learning methods
- CO4: Solving problem using Supervised learning
- CO5: Solving problem using Unsupervised learning

TOTAL PERIODS: 60

TEXT BOOK

- 1. S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach", Prentice Hall, Fourth Edition, 2021
- 2. S.N.Sivanandam and S.N.Deepa, Principles of soft computing-Wiley India.3 rd ed,

REFERENCES

- 1. Machine Learning. Tom Mitchell. First Edition, McGraw- Hill, 1997.
- 2. I. Bratko, "Prolog: Programming for Artificial Intelligencell, Fourth edition, Addison-Wesley Educational Publishers Inc., 2011.
- 3. C. Muller & Sarah Alpaydin, Ethem. Introduction to machine learning. MIT press, 2020.

OCS352

IOT CONCEPTS AND APPLICATIONS

LTPC 2023

OBJECTIVES:

- To apprise students with basic knowledge of IoT that paves a platform to understand physical and logical design of IOT
- To teach a student how to analyse requirements of various communication models and protocols for cost-effective design of IoT applications on different IoT platforms.
- To introduce the technologies behind Internet of Things(IoT).
- To explain the students how to code for an IoT application using Arduino/Raspberry Pi open platform.
- To apply the concept of Internet of Things in real world scenario.

UNIT I INTRODUCTION TO INTERNET OF THINGS

5

Evolution of Internet of Things – Enabling Technologies – IoT Architectures: oneM2M, IoT World Forum (IoTWF) and Alternative IoT Models – Simplified IoT Architecture and Core IoT Functional Stack – Fog, Edge and Cloud in IoT

UNIT II COMPONENTS IN INTERNET OF THINGS

5

Functional Blocks of an IoT Ecosystem – Sensors, Actuators, and Smart Objects – Control Units - Communication modules (Bluetooth, Zigbee, Wifi, GPS, GSM Modules)

UNIT III PROTOCOLS AND TECHNOLOGIES BEHIND IOT

IOT Protocols - IPv6, 6LoWPAN, MQTT, CoAP - RFID, Wireless Sensor Networks, BigData Analytics, Cloud Computing, Embedded Systems.

UNIT IV OPEN PLATFORMS AND PROGRAMMING

7

6

IOT deployment for Raspberry Pi /Arduino platform-Architecture —Programming — Interfacing — Accessing GPIO Pins — Sending and Receiving Signals Using GPIO Pins — Connecting to the Cloud.

UNIT V IOT APPLICATIONS

7

Business models for the internet of things, Smart city, Smart mobility and transport, Industrial IoT, Smart health, Environment monitoring and surveillance – Home Automation – Smart Agriculture

30 PERIODS

PRACTICAL EXERCISES: 30 PERIODS

- 1. Introduction to Arduino platform and programming
- 2. Interfacing Arduino to Zigbee module
- 3. Interfacing Arduino to GSM module
- 4. Interfacing Arduino to Bluetooth Module
- 5 Introduction to Raspberry PI platform and python programming
- 6. Interfacing sensors to Raspberry PI
- 7. Communicate between Arduino and Raspberry PI using any wireless medium
- 8. Setup a cloud platform to log the data
- 9. Log Data using Raspberry PI and upload to the cloud platform
- 10.Design an IOT based system

OUTCOMES:

- CO 1:Explain the concept of IoT.
- CO 2:Understand the communication models and various protocols for IoT.
- CO 3:Design portable IoT using Arduino/Raspberry Pi /open platform
- **CO 4:**Apply data analytics and use cloud offerings related to IoT.
- **CO 5**:Analyze applications of IoT in real time scenario.

TOTAL PERIODS:60

TEXTBOOKS

- Robert Barton, Patrick Grossetete, David Hanes, Jerome Henry, Gonzalo Salgueiro, "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", CISCO Press. 2017
- 2. Samuel Greengard, The Internet of Things, The MIT Press, 2015

REFERENCES

- 1. Perry Lea, "Internet of things for architects", Packt, 2018
- 2. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things Key applications and Protocols", Wiley, 2012
- 3. IOT (Internet of Things) Programming: A Simple and Fast Way of Learning, IOT Kindle Edition.
- 4. Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), "Architecting the Internet of Things", Springer, 2011.
- 5. ArshdeepBahga, Vijay Madisetti, "Internet of Things A hands-on approach", Universities Press, 2015
- 6. https://www.arduino.cc/ https://www.ibm.com/smarterplanet/us/en/?ca=v_smarterplanet

COURSE OBJECTIVES:

- Familiarize students with the data science process.
- Understand the data manipulation functions in Numpy and Pandas.
- Explore different types of machine learning approaches.
- Understand and practice visualization techniques using tools.
- Learn to handle large volumes of data with case studies.

UNIT I INTRODUCTION

6

Data Science: Benefits and uses – facets of data - Data Science Process: Overview – Defining research goals – Retrieving data – data preparation - Exploratory Data analysis – build the model – presenting findings and building applications - Data Mining - Data Warehousing – Basic statistical descriptions of Data

UNIT II DATA MANIPULATION

9

Python Shell - Jupyter Notebook - IPython Magic Commands - NumPy Arrays-Universal Functions – Aggregations – Computation on Arrays – Fancy Indexing – Sorting arrays – Structured data – Data manipulation with Pandas – Data Indexing and Selection – Handling missing data – Hierarchical indexing – Combining datasets – Aggregation and Grouping – String operations – Working with time series – High performance

UNIT III MACHINE LEARNING

5

The modeling process - Types of machine learning - Supervised learning - Unsupervised learning - Semi-supervised learning - Classification, regression - Clustering - Outliers and Outlier Analysis

UNIT IV DATA VISUALIZATION

5

Importing Matplotlib – Simple line plots – Simple scatter plots – visualizing errors – density and contour plots – Histograms – legends – colors – subplots – text and annotation – customization – three dimensional plotting - Geographic Data with Basemap - Visualization with Seaborn

UNIT V HANDLING LARGE DATA

5

Problems - techniques for handling large volumes of data - programming tips for dealing with large data sets- Case studies: Predicting malicious URLs, Building a recommender system - Tools and techniques needed - Research question - Data preparation - Model building - Presentation and automation.

30 PERIODS

PRACTICAL EXERCISES:

30 PERIODS

LAB EXERCISES

- 1. Download, install and explore the features of Python for data analytics.
- 2. Working with Numpy arrays
- 3. Working with Pandas data frames
- 4. Basic plots using Matplotlib
- 5. Statistical and Probability measures
 - a) Frequency distributions
 - b) Mean, Mode, Standard Deviation
 - c) Variability
 - d) Normal curves
 - e) Correlation and scatter plots
 - f) Correlation coefficient
 - g) Regression
- 6. Use the standard benchmark data set for performing the following:
- a) Univariate Analysis: Frequency, Mean, Median, Mode, Variance, Standard Deviation, Skewness and Kurtosis.
- b) Bivariate Analysis: Linear and logistic regression modelling.

- 7. Apply supervised learning algorithms and unsupervised learning algorithms on any data set.
- 8. Apply and explore various plotting functions on any data set.

Note: Example data sets like: UCI, Iris, Pima Indians Diabetes etc.

COURSE OUTCOMES:

At the end of this course, the students will be able to:

CO1: Gain knowledge on data science process.

CO2: Perform data manipulation functions using Numpy and Pandas.

CO3 Understand different types of machine learning approaches.

CO4: Perform data visualization using tools.

CO5: Handle large volumes of data in practical scenarios.

TOTAL:60 PERIODS

TEXT BOOKS

- 1. David Cielen, Arno D. B. Meysman, and Mohamed Ali, "Introducing Data Science", Manning Publications, 2016.
- 2. Jake VanderPlas, "Python Data Science Handbook", O'Reilly, 2016.

REFERENCES

- 1. Robert S. Witte and John S. Witte, "Statistics", Eleventh Edition, Wiley Publications, 2017.
- 2. Allen B. Downey, "Think Stats: Exploratory Data Analysis in Python", Green Tea Press.2014.

CCS333

AUGMENTED REALITY/VIRTUAL REALITY

L T P C 2 0 2 3

OBJECTIVES:

- To impart the fundamental aspects and principles of AR/VR technologies.
- To know the internals of the hardware and software components involved in the development of AR/VR enabled applications.
- To learn about the graphical processing units and their architectures.
- To gain knowledge about AR/VR application development.
- To know the technologies involved in the development of AR/VR based applications.

UNIT I INTRODUCTION

7

Introduction to Virtual Reality and Augmented Reality – Definition – Introduction to Trajectories and Hybrid Space-Three I's of Virtual Reality – Virtual Reality Vs 3D Computer Graphics – Benefits of Virtual Reality – Components of VR System – Introduction to AR-AR Technologies-Input Devices – 3D Position Trackers – Types of Trackers – Navigation and Manipulation Interfaces – Gesture Interfaces – Types of Gesture Input Devices – Output Devices – Graphics Display – Human Visual System – Personal Graphics Displays – Large Volume Displays – Sound Displays – Human Auditory System.

UNIT II VR MODELING

6

Modeling – Geometric Modeling – Virtual Object Shape – Object Visual Appearance – Kinematics Modeling – Transformation Matrices – Object Position – Transformation Invariants – Object Hierarchies – Viewing the 3D World – Physical Modeling – Collision Detection – Surface Deformation – Force Computation – Force Smoothing and Mapping – Behavior Modeling – Model Management.

UNIT III VR PROGRAMMING

6

VR Programming – Toolkits and Scene Graphs – World ToolKit – Java 3D – Comparison of World ToolKit and Java 3D

UNIT IV APPLICATIONS

Human Factors in VR – Methodology and Terminology – VR Health and Safety Issues – VR and Society-Medical Applications of VR – Education, Arts and Entertainment – Military VR Applications – Emerging Applications of VR – VR Applications in Manufacturing – Applications of VR in Robotics – Information Visualization – VR in Business – VR in Entertainment – VR in Education.

UNIT V AUGMENTED REALITY

5

Introduction to Augmented Reality-Computer vision for AR-Interaction-Modelling and Annotation-Navigation-Wearable devices

30 PERIODS

PRACTICAL EXERCISES:

30 PERIODS

- 1. Study of tools like Unity, Maya, 3DS MAX, AR toolkit, Vuforia and Blender.
- 2. Use the primitive objects and apply various projection types by handling camera.
- 3. Download objects from asset store and apply various lighting and shading effects.
- 4. Model three dimensional objects using various modelling techniques and apply textures over them.
- 5. Create three dimensional realistic scenes and develop simple virtual reality enabled mobile applications which have limited interactivity.
- 6. Add audio and text special effects to the developed application.
- 7. Develop VR enabled applications using motion trackers and sensors incorporating full haptic interactivity.
- 8. Develop AR enabled applications with interactivity like E learning environment, Virtual walkthroughs and visualization of historic places.
- 9. Develop AR enabled simple applications like human anatomy visualization, DNA/RNA structure visualization and surgery simulation.
- 10. Develop simple MR enabled gaming applications.

TOTAL PERIODS:60

OUTCOMES:

On completion of the course, the students will be able to:

CO1: Understand the basic concepts of AR and VR

CO2:Understand the tools and technologies related to AR/VR

CO3:Know the working principle of AR/VR related Sensor devices

CO4: Design of various models using modeling techniques

CO5: Develop AR/VR applications in different domains

TEXTBOOKS:

- 1. Charles Palmer, John Williamson, "Virtual Reality Blueprints: Create compelling VR experiences for mobile", Packt Publisher, 2018
- 2. Dieter Schmalstieg, Tobias Hollerer, "Augmented Reality: Principles & Practice", Addison Wesley, 2016
- 3. John Vince, "Introduction to Virtual Reality", Springer-Verlag, 2004.
- 4. William R. Sherman, Alan B. Craig: Understanding Virtual Reality Interface, Application, Design", Morgan Kaufmann, 2003

6

<u>OPEN ELCTIVE III</u>

OCE353 LEAN CONCEPTS, TOOLS AND PRACTICES

LT P C 3 0 0 3

OBJECTIVE:

• To impart knowledge about the basics of lean principles, tools and techniques, and implementation in the construction industry.

UNIT I INTRODUCTION

9

Introduction and overview of the construction project management - Review of Project Management & Productivity Measurement Systems - Productivity in Construction - Daily Progress Report-The state of the industry with respect to its management practices -construction project phases - The problems with current construction management techniques.

UNIT II LEAN MANAGEMENT

9

Introduction to lean management - Toyota's management principle-Evolution of lean in construction industry - Production theories in construction –Lean construction value - Value in construction - Target value design - Lean project delivery system- Forms of waste in construction industry - Waste Elimination.

UNIT III CORE CONCEPTS IN LEAN

9

Concepts in lean thinking – Principles of lean construction – Variability and its impact – Traditional construction and lean construction – Traditional project delivery - Lean construction and workflow reliability – Work structuring – Production control.

UNIT IV LEAN TOOLS AND TECHNIQUES

g

Value Stream Mapping – Work sampling – Last planner system – Flow and pull based production – Last Planner System – Look ahead schedule – constraint analysis – weekly planning meeting- Daily Huddles – Root cause analysis – Continuous improvement – Just in time.

UNIT V LEAN IMPLEMENTATION IN CONSTRUCTION INDUSTRY

a

TOTAL: 45 PERIODS

Lean construction implementation- Enabling lean through information technology - Lean in design - Design Structure - BIM (Building Information Modelling) - IPD (Integrated Project Delivery) - Sustainability through lean construction approach.

OUTCOMES:

On completion of this course, the student is expected to be able to

- **CO1** Explains the contemporary management techniques and the issues in present scenario.
- **CO2** Apply the basics of lean management principles and their evolution from manufacturing industry to construction industry.
- **CO3** Develops a better understanding of core concepts of lean construction tools and techniques and their importance in achieving better productivity.
- **CO4** Apply lean techniques to achieve sustainability in construction projects.
- **CO5** Apply lean construction techniques in design and modeling.

REFERENCES:

- 1. Corfe, C. and Clip, B., Implementing lean in construction: Lean and the sustainability agenda, CIRIA, 2013.
- 2. Shang Gao and Sui Pheng Low, Lean Construction Management: The Toyota Way, Springer, 2014.
- 3. Dave, B., Koskela, L., Kiviniemi, A., Owen, R., andTzortzopoulos, P.,Implementing lean in construction: Lean construction and BIM, CIRIA, 2013.
- 4. Ballard, G., Tommelein, I., Koskela, L. and Howell, G., Lean construction tools and techniques, 2002.
- 5. Salem, O., Solomon, J., Genaidy, A. and Luegring, M., Site implementation and Assessment of Lean Construction Techniques, Lean Construction Journal, 2005.

L T P C 3 0 0 3

TOTAL: 45 PERIODS

Course Description:

Students aspiring to take up competitive exams of which the English language is a vital component will find this course useful. Designed for students in the higher semesters, the course will help students to familiarise themselves with those aspects of English that are tested in these examinations.

Objectives:

- To train the students in the language components essential to face competitive examinations both at the national (UPSC, Banking, Railway, Defence) and the international level (GRE, TOEFL, IELTS).
- To enhance an awareness of the specific patterns in language testing and the respective skills to tackle verbal reasoning and verbal ability tests.
- To inculcate effective practices in language-learning in order to improve accuracy in usage of grammar and coherence in writing.
- To improve students' confidence to express their ideas and opinions in formal contexts
- To create awareness of accuracy and precision in communication

UNIT I 9

Orientation on different formats of competitive exams - Vocabulary - Verbal ability - Verbal reasoning - Exploring the world of words - Essential words - Meaning and their usage - Synonyms-antonyms - Word substitution - Word analogy - Idioms and phrases - Commonly confused words - Spellings - Word expansion - New words in use.

UNIT II 9

Grammar – Sentence improvement –Sentence completion – Rearranging phrases into sentences – Error identification –Tenses – Prepositions – Adjectives – Adverbs – Subject-verb agreement – Voice – Reported speech – Articles – Clauses – Speech patterns.

UNIT III 9

Reading - Specific information and detail – Identifying main and supporting ideas – Speed reading techniques – Improving global reading skills – Linking ideas – Summarising – Understanding argument – Identifying opinion/attitude and making inferences - Critical reading.

UNIT IV 9

Writing – Pre-writing techniques – Mindmap - Describing pictures and facts - Paragraph structure – organising points – Rhetoric writing – Improving an answer – Drafting, writing and developing an argument – Focus on cohesion – Using cohesive devices –Analytic writing – Structure and types of essay – Mind maps – Structure of drafts, letters, memos, emails – Statements of Purpose – Structure, Content and Style.

UNIT V 9

Listening and Speaking – Contextual listening – Listening to instructions – Listening for specific information – Identifying detail, main ideas – Following signpost words – Stress, rhythm and intonation - Speaking to respond and elicit ideas – Guided speaking – Opening phrases – Interactive communication – Dysfluency -Sentence stress – Speaking on a topic – Giving opinions – Giving an oral presentation – Telling a story or a personal anecdote – Talking about oneself - Utterance – Speech acts- Brainstorming ideas – Group discussion.

Learning Outcomes:

At the end of the course, learners will be able

- expand their vocabulary and gain practical techniques to read and comprehend a wide range of texts with the emphasis required
- identify errors with precision and write with clarity and coherence

- understand the importance of task fulfilment and the usage of task-appropriate vocabulary
- communicate effectively in group discussions, presentations and interviews
- write topic based essays with precision and accuracy

CO-PO & PSO MAPPING

CO			PC)									PS	0	
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	3	3	1	3	3	3	3	1	3	1	3	-	-	-
2	2	3	3	2	3	3	3	3	1	3	3	3	-	-	-
3	3	3	3	3	3	3	3	3	3	3	3	3	-	-	-
4	2	2	2	2	2	2	2	2	3	3	3	3	-	-	-
5	2	2	2	2	2	2	2	2	2	3	2	3	-	-	-
AVg.	2	2.6	2.6	2	2.6	2.6	2.6	2.6	2	3	2.4	3	-	-	-

• 1-low, 2-medium, 3-high, '-"- no correlation

Note: The average value of this course to be used for program articulation matrix.

Teaching Methods:

Instructional methods will involve discussions, taking mock tests on various question papers – Objective, multiple-choice and descriptive. Peer evaluation, self-check on improvement and peer feedback - Practice sessions on speaking assessments, interview and discussion – Using multimedia.

Evaluative Pattern:

Internal Tests – 50% End Semester Exam - 50%

TEXT BOOK:

1. R.P.Bhatnagar - General English for Competitive Examinations. Macmillan India Limited, 2009.

REFERENCE BOOKS:

- 1. Educational Testing Service The Official Guide to the GRE Revised General Test, Tata McGraw Hill. 2010.
- 2. The Official Guide to the TOEFL Test, Tata McGraw Hill, 2010.
- 3. R Rajagopalan- General English for Competitive Examinations, McGraw Hill Education (India) Private Limited, 2008.

Websites

http://www.examenglish.com/, http://www.ets.org/, http://www.bankxams.com/ http://civilservicesmentor.com/, http://www.educationobserver.com http://www.cambridgeenglish.org/in/

OMG352 NGOS AND SUSTAINABLE DEVELOPMENT

LTP C 3 0 0 3

COURSE OBJECTIVES

- To understand the importance of sustainable development
- To acquire a reasonable knowledge on the legal frameworks pertaining to pollution control and environmental management
- To comprehend the role of NGOs in attaining sustainable development

UNIT I ENVIRONMENTAL CONCERNS

Introduction to sustainable development goals, Global responsibility of environmental concern, Importance of environmental preservation, Environmental threats, Pollution and its types, Effects of Pollution, Pollution control, Treatment of wastes

UNIT II ROLE OF NGOS

9

Role of NGO's in national development, NGO's and participatory management, Challenges and limitations of NGO's, Community Development programmes, Role of NGO's in Community Development programmes, Participation of NGO's in environment management, Corporate Social responsibility, NGO's and corporate social responsibility

UNIT III SUSTAINABLE DEVELOPMENT

q

Issues and Challenges of Sustainable Development, Bioenergy, Sustainable Livelihoods and Rural Poor in Sustainable Development, Protecting ecosystem services for sustainable development, Non-renewable sources of energy and its effect, Renewable sources of energy for sustainability, Nuclear resources and Legal Regulation of Hazardous Substances, Sustainable Development: Programme and Policies, Sustainability assessment and Indicators

UNIT IV NGO'S FOR SUSTAINABILITY

9

Civil Society Initiatives in Environment Management, Civil Society Initiatives for Sustainable Development, Global Initiatives in Protecting Global Environment, World Summit on Sustainable Development (Johannesburg Summit 2002), Ecological economics, Environmental sustainability, Social inclusion, Health for all, education for all, Food security and Water security, NGOs and Sustainable Development strategies

UNIT V LEGAL FRAMEWORKS

a

Need for a Legal framework and its enforcement, Legal measures to control pollution, Environmental Legislations in India, Mechanism to implement Environmental Laws in India, Legal Protection of Forests Act 1927, Legal Protection of Wild Life, Role of NGO's in implementing environmental laws, Challenges in the implementation of environmental legislation

TOTAL 45: PERIODS

OUTCOMES

Upon completion of this course, the student will:

CO1 Have a thorough grounding on the issues and challenges being faced in attaining sustainable development

CO2 have a knowledge on the role of NGOs towards sustainable developemnt

CO 3 present strategies for NGOs in attaining sustainable development

CO 4 recognize the importance of providing energy, food security and health equity to all members of the society without damaging the environment

CO 5 understand the environmental legislations

REFERENCE BOOKS

- 1. Kulsange, S and Kamble, R. (2019). Environmental NGO's: Sustainability Stewardship, Lap Lambert Academic Publishing, India, ISBN-13: 978-6200442444.
- 2. Dodds, F. (2007). NGO diplomacy: The influence of nongovernmental organizations in international environmental negotiations. Mit Press, Cambridge, ISBN-13: 978-0262524766.
- 3. Ghosh, S. (Ed.). (2019). Indian environmental law: Key concepts and principles. Orient BlackSwan, India, ISBN-13: 978-9352875795.
- 4. Alan Fowler and Chiku Malunga (2010) NGO Management: The Earthscan Companion, Routledge, ISBN-13: 978-1849711197.

LTP C 3 0 0 3

UNIT-I (9)

Structure and Process of Governance: Indian Model of Democracy, Parliament, Party Politics and Electoral Behaviour, Federalism, the Supreme Court and Judicial Activism, Units of Local Governance

UNIT-II (9)

Regulatory Institutions – SEBI, TRAI, Competition Commission of India,

UNIT-III (9)

Lobbying Institutions: Chambers of Commerce and Industries, Trade Unions, Farmers Associations, etc.

UNIT- IV (9)

Contemporary Political Economy of Development in India: Policy Debates over Models of Development in India, Recent trends of Liberalisation of Indian Economy in different sectors, Egovernance

UNIT-V (9)

Dynamics of Civil Society: New Social Movements, Role of NGO's, Understanding the political significance of Media and Popular Culture.

TOTAL 45 : PERIODS

REFERENCES:

- 1. Atul Kohli (ed.): The Success of India's Democracy, Cambridge University Press, 2001.
- 2. Corbridge, Stuart and John Harris: Reinventing India: Liberalisation, Hindu Nationalism and Popular Democracy, Oxford University Press, 2000.
- 3. J.Dreze and A.Sen, India: Economic Development and Social Opportunity, Clarendon, 1995.
- 4. Saima Saeed: Screening the Public Sphere: Media and Democracy in India,2013
- 5. Himat Singh: Green Revolution Reconsidered: The Rural World of Punjab, OUP, 2001.
- 6. Jagdish Bhagwati: India in Transition: Freeing The Economy, 1993.
- 7. Smitu Kothari: Social Movements and the Redefinition of Democracy, Boulder, Westview, 1993.

CME365 RENEWABLE ENERGY TECHNOLOGIES

L T P C 3 0 0 3

COURSE OBJECTIVES

- 1 To know the Indian and global energy scenario
- 2 To learn the various solar energy technologies and its applications.
- To educate the various wind energy technologies.
- 4 To explore the various bio-energy technologies.
- 5 To study the ocean and geothermal technologies.

UNIT – I ENERGY SCENARIO

9

Indian energy scenario in various sectors – domestic, industrial, commercial, agriculture, transportation and others – Present conventional energy status – Present renewable energy status-Potential of various renewable energy sources-Global energy status-Per capita energy consumption - Future energy plans

UNIT – II SOLAR ENERGY

9

Solar radiation – Measurements of solar radiation and sunshine – Solar spectrum - Solar thermal collectors – Flat plate and concentrating collectors – Solar thermal applications – Solar thermal energy storage – Fundamentals of solar photo voltaic conversion – Solar cells – Solar PV Systems – Solar PV applications.

UNIT – III WIND ENERGY

Wind data and energy estimation – Betz limit - Site selection for windfarms – characteristics - Wind resource assessment - Horizontal axis wind turbine – components - Vertical axis wind turbine – Wind turbine generators and its performance – Hybrid systems – Environmental issues - Applications.

UNIT – IV BIO-ENERGY

9

Bio resources – Biomass direct combustion – thermochemical conversion - biochemical conversion-mechanical conversion - Biomass gasifier - Types of biomass gasifiers - Cogeneration — Carbonisation – Pyrolysis - Biogas plants – Digesters –Biodiesel production – Ethanol production - Applications.

UNIT – V OCEAN AND GEOTHERMAL ENERGY

9

Small hydro - Tidal energy - Wave energy - Open and closed OTEC Cycles - Limitations - Geothermal energy - Geothermal energy sources - Types of geothermal power plants - Applications - Environmental impact.

OUTCOMES:

TOTAL: 45 PERIODS

At the end of the course the students would be able to

- Discuss the Indian and global energy scenario.
- Describe the various solar energy technologies and its applications.
- Explain the various wind energy technologies.
- Explore the various bio-energy technologies.
- Discuss the ocean and geothermal technologies.

0

TEXT BOOKS:

- Fundamentals and Applications of Renewable Energy | Indian Edition, by Mehmet Kanoglu, Yunus A. Cengel, John M. Cimbala, cGraw Hill; First edition (10 December 2020), ISBN-10: 9390385636
- Renewable Energy Sources and Emerging Technologies, by Kothari, Prentice Hall India Learning Private Limited; 2nd edition (1 January 2011), ISBN-10: 8120344707

REFERENCES:

- 1. Godfrey Boyle, "Renewable Energy, Power for a Sustainable Future", Oxford University Press, U.K., 2012.
- 2. Rai.G.D., "Non-Conventional Energy Sources", Khanna Publishers, New Delhi, 2014.
- 3. Sukhatme.S.P., "Solar Energy: Principles of Thermal Collection and Storage", Tata McGraw Hill Publishing Company Ltd., New Delhi, 2009.
- 4. Tiwari G.N., "Solar Energy Fundamentals Design, Modelling and applications", Alpha Science Intl Ltd, 2015.
- 5. Twidell, J.W. & Weir A., "Renewable Energy Resources", EFNSpon Ltd., UK, 2015.

СО	РО												PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	1	1	1	1	2	3	2	2	1	1	3	2	1	2
2	3	2	2	1	1	1	3	1	1	1	2	3	2	1	2
3	3	2	3	1	2	1	3	1	1	1	1	3	1	1	2
4	2	2	2	1	2	1	3	1	1	1	2	3	2	2	2
5	2	1	2	1	2	1	3	1	1	1	1	3	2	1	2
				Lov	v (1) ;	М	ediun	n (2);	H	ligh (3)				

3 0 0 3

OBJECTIVES:

The course aims to

- Introduce tools & techniques of design thinking for innovative product
- development Illustrate customer-centric product innovation using on simple
- use cases Demonstrate development of Minimum usable Prototypes
- Outline principles of solution concepts & their evaluation
- Describe system thinking principles as applied to complex systems

UNIT I DESIGN THINKING PRINCIPLES

9

Exploring Human-centered Design - Understanding the Innovation process, discovering areas of opportunity, Interviewing & empathy-building techniques, Mitigate validation risk with FIR [Forge Innovation rubric] - Case studies

UNIT II ENDUSER-CENTRIC INNOVATION

9

Importance of customer-centric innovation - Problem Validation and Customer Discovery - Understanding problem significance and problem incidence - Customer Validation. Target user, User persona & user stories. Activity: Customer development process - Customer interviews and field visit

UNIT III APPLIED DESIGN THINKING TOOLS

9

Concept of Minimum Usable Prototype [MUP] - MUP challenge brief - Designing & Crafting the value proposition - Designing and Testing Value Proposition; Design a compelling value proposition; Process, tools and techniques of Value Proposition Design

UNIT IV CONCEPT GENERATION

9

Solution Exploration, Concepts Generation and MUP design- Conceptualize the solution concept; explore, iterate and learn; build the right prototype; Assess capability, usability and feasibility. Systematic concept generation; evaluation of technology alternatives and the solution concepts

UNIT V SYSTEM THINKING

9

System Thinking, Understanding Systems, Examples and Understandings, Complex Systems

TOTAL: 45 PERIODS

Course Outcomes

At the end of the course, learners will be able to:

- Define & test various hypotheses to mitigate the inherent risks in product innovations.
- Design the solution concept based on the proposed value by exploring alternate solutions to achieve value-price fit.
- Develop skills in empathizing, critical thinking, analyzing, storytelling & pitching
- Apply system thinking in a real-world scenario

Text Books

- 1. Steve Blank, (2013), The four steps to epiphany: Successful strategies for products that win, Wiley.
- 2. Alexander Osterwalder, Yves Pigneur, Gregory Bernarda, Alan Smith, Trish Papadakos, (2014), Value
- 3. Proposition Design: How to Create Products and Services Customers Want, Wiley
- 4. Donella H. Meadows, (2015), "Thinking in Systems -A Primer", Sustainability Institute.
- 5. Tim Brown,(2012) "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", Harper Business.

REFERENCES

- 1. https://www.ideou.com/pages/design-thinking#process
- 2. https://blog.forgeforward.in/valuation-risk-versus-validation-risk-in-product-innovations-49f253ca86_2
- 3. https://blog.forgefor.ward.in/product-innovation-rubric-adf5ebdfd356

- 4. https://blog.forgefor.ward.in/evaluating-product-innovations-e8178e58b86e
- 5. https://blog.forgefor.ward.in/user-guide-for-product-innovation-rubric-857181b253dd
- 6. https://blog.forgefor.ward.in/star.tup-failure-is-like-true-lie-7812cdfe9b85

MF3003

REVERSE ENGINEERING

LT P C 3003

COURSE OBJECTIVES:

- The main learning objective of this course is to prepare students for:
- Applying the fundamental concepts and principles of reverse engineering in product design and
- Applying the concept and principles material characteristics, part durability and life limitation in reverse engineering of product design and development.
- Applying the concept and principles of material identification and process verification in reverse engineering of product design and development.
- Analysing the various legal aspect and applications of reverse engineering in product design and development.
- Understand about 3D scanning hardware & software operations and procedure to generate 3D model

UNIT I **INTRODUCTION & GEOMETRIC FORM**

9 Hours

Definition - Uses - The Generic Process - Phases - Computer Aided Reverse Engineering -Surface and Solid Model Reconstruction – Dimensional Measurement – Prototyping.

MATERIAL CHARACTERISTICS AND PROCESS IDENTIFICATION 9 Hours

.Alloy Structure Equivalency – Phase Formation and Identification – Mechanical Strength – Hardness –Part Failure Analysis – Fatigue – Creep and Stress Rupture – Environmentally Induced Failure Material Specification - Composition Determination - Microstructure Analysis - Manufacturing Process Verification.

UNIT III **DATA PROCESSING**

9 Hours

Statistical Analysis – Data Analysis – Reliability and the Theory of Interference – Weibull Analysis – Data Conformity and Acceptance - Data Report - Performance Criteria - Methodology of Performance Evaluation – System Compatibility.

UNIT IV 3D SCANNING AND MODELLING

9 Hours

Introduction, working principle and operations of 3D scanners: Laser, White Light, Blue Light -Applications- Software for scanning and modelling: Types- Applications- Preparation techniques for Scanning objects- Scanning and Measuring strategies - Calibration of 3D Scanner- Step by step procedure: 3D scanning - Geometric modelling - 3D inspection- Case studies.

UNIT V **INDUSTRIAL APPLICATIONS**

9 Hours

Reverse Engineering in the Automotive Industry; Aerospace Industry; Medical Device Industry. Case studies and Solving Industrial projects in Reverse Engineering.Legality: Patent – Copyrights –Trade Secret – Third-Party Materials. **TOTAL: 45 PERIODS**

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

- Apply the fundamental concepts and principles of reverse engineering in product design and development.
- Apply the concept and principles material characteristics, part durability and life limitation in reverse engineering of product design and development.
- Apply the concept and principles of material identification and process verification in reverse engineering of product design and development.

- Apply the concept and principles of data processing, part performance and system compatibility in reverse engineering of product design and development.
- Analyze the various legal aspect
- Applications of reverse engineering in product design and development.

TEXT BOOKS:

- 1. Robert W. Messler, Reverse Engineering: Mechanisms, Structures, Systems & Materials, 1st Edition, McGraw-Hill Education, 2014
- Wego Wang, Reverse Engineering Technology of Reinvention, CRC Press, 2011

REFERENCES:

- 1. Scott J. Lawrence, Principles of Reverse Engineering, Kindle Edition, 2022
- Kevin Otto and Kristin Wood, Product Design: Techniques in Reverse Engineering and New Product Development, Prentice Hall, 2001
- 3. Kathryn, A. Ingle, "Reverse Engineering", McGraw-Hill, 1994.
- 4. Linda Wills, "Reverse Engineering", Kluver Academic Publishers, 1996
- 5. Vinesh Raj and Kiran Fernandes, "Reverse Engineering: An Industrial Perspective", Springer-Verlag London Limited 2008.

OPR351

SUSTAINABLE MANUFACTURING

LTPC 300 3

COURSE OBJECTIVES:

- To be acquainted with sustainability in manufacturing and its evaluation.
- To provide knowledge in environment and social sustainability.
- To provide the student with the knowledge of strategy to achieve sustainability.
- To familiarize with trends in sustainable operations.
- To create awareness in current sustainable practices in manufacturing industry.

UNIT – I ECONOMIC SUSTAINABILITY

9

Industrial Revolution-Economic sustainability: globalization and international issues Sustainability status - Emerging issues- Innovative products- Reconfiguration manufacturing enterprises - Competitive manufacturing strategies - Performance evaluation- Management for sustainability - Assessments of economic sustainability

UNIT – II SOCIAL AND ENVIRONMENTAL SUSTAINABILITY

9

Social sustainability – Introduction-Work management -Human rights - Societal commitment - Customers -Business practices -Modelling and assessing social sustainability. Environmental issues pertaining to the manufacturing sector: Pollution - Use of resources -Pressure to reduce costs - Environmental management: Processes that minimize negative environmental impacts - environmental legislation and energy costs - need to reduce the carbon footprint of manufacturing Operations-Modelling and assessing environmental sustainability

UNIT – III SUSTAINABILITY PRACTICES

9

Sustainability awareness - Measuring Industry Awareness-Drivers and barriers -Availability of sustainability indicators -Analysis of sustainability practicing -Modeling and assessment of sustainable practicing -Sustainability awareness -Sustainability drivers and barriers - Availability of sustainability indicators- Designing questionnaires- Optimizing Sustainability Indexes-Elements - Cost and time model.

UNIT – IV MANUFACTURING STRATEGY FOR SUSTAINABILITY

9

Concepts of competitive strategy and manufacturing strategies and development of a strategic improvement programme - Manufacturing strategy in business success strategy formation and formulation - Structured strategy formulation - Sustainable manufacturing system design options - Approaches to strategy formulation - Realization of new strategies/system designs.

UNIT – V TRENDS IN SUSTAINABLE OPERATIONS

Principles of sustainable operations - Life cycle assessment manufacturing and service activities - influence of product design on operations - Process analysis – Capacity management - Quality management - Inventory management - Just-In-Time systems - Resource efficient design - Consumerism and sustainable well-being.

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon successful completion of the course, students should be able to:

CO1: Discuss the importance of economic sustainability.

CO2: Describe the importance of sustainable practices.

CO3: Identify drivers and barriers for the given conditions.

CO4: Formulate strategy in sustainable manufacturing.

CO5: Plan for sustainable operation of industry with environmental, cost consciousness.

TEXT BOOKS:

- 1. Ibrahim Garbie, "Sustainability in Manufacturing Enterprises Concepts, Analyses and Assessments for Industry 4.0", Springer International Publishing., United States, 2016, ISBN-13: 978-3319293042.
- 2. Davim J.P., "Sustainable Manufacturing", John Wiley & Sons., United States, 2010,ISBN: 978-1-848-21212-1.

REFERENCES:

- 1. Jovane F, Emper, W.E. and Williams, D.J., "The ManuFuture Road: Towards Competitive and Sustainable High-Adding-Value Manufacturing", Springer, 2009, United States, ISBN 978-3-540-77011-4.
- 2. Kutz M., "Environmentally Conscious Mechanical Design", John Wiley & Sons., United States, 2007, ISBN: 978-0-471-72636-4.
- 3. Seliger G., "Sustainable Manufacturing: Shaping Global Value Creation", Springer, United States, 2012, ISBN 978-3-642-27289-9.

Mapping of COs	with	POs	and F	PSOs											
COs/Pos	POs	3											PSC	Os	
&PSOs	1	2													3
CO1	3	-	2	-	-	-	2	2	-	1	1	2	2	2	1
CO2	3	-	-	-	-	-	2	-	-	1	1	2	1	2	2
CO3	3	-	-	-	-	-	2	3	-	1	1	2	1	2	2
CO4	3	-	3	-	-	-	2		-	1	1	2	2	2	1
CO5	3	-	3	-	-	-	2	2	-	1	1	2	2	2	1
CO/PO & PSO Average	3	-	3	-	-	-	2	2	-	1	1	2	2	2	1
1 – Slight, 2 – M	odera	ate, 3	– Su	bstan	tial										

AU3791

ELECTRIC AND HYBRID VEHICLES

LTPC 3003

COURSE OBJECTIVES:

The objective of this course is to prepare the students to know about the general aspects of Electric and Hybrid Vehicles (EHV), including architectures, modelling, sizing, and sub system design and hybrid vehicle control.

UNIT I DESIGN CONSIDERATIONS FOR ELECTRIC VEHICLES

Need for Electric vehicle- Comparative study of diesel, petrol, hybrid and electric Vehicles. Advantages and Limitations of hybrid and electric Vehicles. - Design requirement for electric vehicles- Range, maximum velocity, acceleration, power requirement, mass of the vehicle. Various Resistance- Transmission efficiency- Electric vehicle chassis and Body Design, Electric Vehicle Recharging and Refuelling Systems.

UNIT II ENERGY SOURCES

9

Battery Parameters - Different types of batteries – Lead Acid- Nickel Metal Hydride - Lithium ion-Sodium based- Metal Air. Battery Modelling - Equivalent circuits, Battery charging- Quick Charging devices. Fuel Cell- Fuel cell Characteristics- Fuel cell types-Half reactions of fuel cell. Ultra capacitors. Battery Management System.

UNIT III MOTORS AND DRIVES

9

Types of Motors- DC motors- AC motors, PMSM motors, BLDC motors, Switched reluctance motors working principle, construction and characteristics.

UNIT IV POWER CONVERTERS AND CONTROLLERS

9

Solid state Switching elements and characteristics – BJT, MOSFET, IGBT, SCR and TRIAC - Power Converters – rectifiers, inverters and converters - Motor Drives - DC, AC motor, PMSM motors, BLDC motors, Switched reluctance motors – four quadrant operations –operating modes

UNIT V HYBRID AND ELECTRIC VEHICLES

9

TOTAL: 45 PERIODS

Main components and working principles of a hybrid and electric vehicles, Different configurations of hybrid and electric vehicles. Power Split devices for Hybrid Vehicles - Operation modes - Control Strategies for Hybrid Vehicle - Economy of hybrid Vehicles - Case study on specification of electric and hybrid vehicles.

COURSE OUTCOMES:

At the end of this course, the student will be able to

- 1. Understand the operation and architecture of electric and hybrid vehicles
- 2. Identify various energy source options like battery and fuel cell
- 3. Select suitable electric motor for applications in hybrid and electric vehicles.
- 4. Explain the role of power electronics in hybrid and electric vehicles
- 5. Analyze the energy and design requirement for hybrid and electric vehicles.

TEXT BOOKS:

- 1. Iqbal Husain, "Electric and Hybrid Vehicles-Design Fundamentals", CRC Press,2003
- 2. Mehrdad Ehsani, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles", CRCPress, 2005.

- 1. James Larminie and John Lowry, "Electric Vehicle Technology Explained " John Wiley & Sons,2003
- 2. Lino Guzzella, "Vehicle Propulsion System" Springer Publications, 2005
- 3. Ron HodKinson, "Light Weight Electric/ Hybrid Vehicle Design", Butterworth Heinemann Publication, 2005.

СО						ſ	20							PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	1	2	1		3	2					2		1	3
2	1	1	2	1		3	2					2		1	3
3	1	1	2	1		3	2					2		1	3
4	1	1	2	1		3	2					2		1	3
5	1	1	2	1		3	2					2		1	3
Avg.	1	1	2	1		3	2					2		1	3

OBJECTIVES:

- Use the standard atmosphere tables and equations.
- > Find lift and drag coefficient data from NACA plots.
- > Apply the concept of static stability to flight vehicles.
- > Describe the concepts of stress, strain, Young's modulus, Poisson's ratio, yield strength.
- > Demonstrate a basic knowledge of dynamics relevant to orbital mechanics.

UNIT I STANDARD ATMOSPHERE

6

History of aviation – standard atmosphere - pressure, temperature and density altitude.

UNIT II AERODYNAMICS

10

Aerodynamic forces – Lift generation Viscosity and its implications - Shear stress in a velocity profile - Lagrangian and Eulerian flow field - Concept of a streamline – Aircraft terminology and geometry - Aircraft types - Lift and drag coefficients using NACA data.

UNIT III PERFORMANCE AND PROPULSION

9

Viscous and pressure drag - flow separation - aerodynamic drag - thrust calculations -thrust/power available and thrust/power required.

UNIT IV AIRCRAFT STABILITY AND STRUCTURAL THEORY

10

Degrees of freedom of aircraft motions - stable, unstable and neutral stability - concept of static stability - Hooke's Law- brittle and ductile materials - moment of inertia - section modulus.

UNIT V SPACE APPLICATIONS

10

History of space research - spacecraft trajectories and basic orbital manoeuvres - six orbital elements - Kepler's laws of orbits - Newtons law of gravitation.

TOTAL: 45 PERIODS

OUTCOMES:

- ☐ Illustrate the history of aviation & developments over the years
- ☐ Ability to identify the types & classifications of components and control systems
- ☐ Explain the basic concepts of flight & Physical properties of Atmosphere
- ☐ Identify the types of fuselage and constructions.
- ☐ Distinguish the types of Engines and explain the principles of Rocket

TEXT BOOKS:

- 1. John D. Anderson, Introduction to Flight, 8 th Ed., McGraw-Hill Education, New York, 2015.
- 2. E Rathakrishnan, "Introduction to Aerospace Engineering: Basic Principles of Flight", John Wiley, NJ, 2021.
- 3. Stephen. A. Brandt, " Introduction to Aeronautics: A design perspective " American Institute of Aeronautics & Earne & Ear

REFERENCE:

1. Kermode, A.C., "Mechanics of Flight", Himalayan Book, 1997.

OSF351

COURSE OBJECTIVES

L T P C 3 0 0 3

- 1:To enable the students to acquire knowledge of Fire and Safety Studies
- 2:To learn about the effect of fire on materials used for construction, the method of test for non-combustibility & fire resistance

FIRE SAFETY ENGINEERING

- 3:To learn about fire area, fire stopped areas and different types of fire-resistant doors
- 4:To learn about the method of fire protection of structural members and their repair due to fire damage.

5:To develop safety professionals for both technical and management through systematic and quality-based study programmes

UNIT I INHERENT SAFETY CONCEPTS

9

Compartment fire-factors controlling fire severity, ventilation controlled and fuel controlled fires; Spread of fire in rooms, within building and between buildings. Effect of temperature on the properties of structural materials- concrete, steel, masonry and wood; Behavior of non-structural materials on fire- plastics, glass, textile fibres and other house hold materials.

UNIT II PLANT LOCATIONS

9

Compartment temperature-time response at pre-flashover and post flashover periods; Equivalence of fire severity of compartment fire and furnace fire; Fire resistance test on structural elements-standard heating condition, Indian standard test method, performance criteria.

UNIT III WORKING CONDITIONS

9

Fire separation between building- principle of calculation of safe distance. Design principles of fire resistant walls and ceilings; Fire resistant screens- solid screens and water curtains; Local barriers; Fire stopped areas-in roof, in fire areas and in connecting structures; Fire doors- Low combustible, Non-combustible and Spark-proof doors; method of suspension of fire doors; Air-tight sealing of doors:

UNIT IV FIRE SEVERITY AND REPAIR TECHNIQUES

9

Fabricated fire proof boards-calcium silicate, Gypsum, Vermiculite, and Perlite boards; Fire protection of structural elements - Wooden, Steel and RCC.. Reparability of fire damaged structures-Assessment of damage to concrete, steel, masonry and timber structures, Repair techniques- repair methods to reinforced concrete Columns, beams and slabs, Repair to steel structural members, Repair to masonry structures.

UNIT V WORKING AT HEIGHTS

9

TOTAL: 45 PERIODS

Safe Access - Requirement for Safe Work Platforms- Stairways - Gangways and Ramps-Fall Prevention & Fall Protection - Safety Belts - Safety nets - Fall Arrestors- Working on Fragile Roofs - Work Permit Systems-Accident Case Studies.

COURSE OUTCOMES

On completion of the course the student will be able to

CO1:Understand the effect of fire on materials used for construction

- **CO2**:Understand the method of test for non-combustibility and fire resistance; and will be able to select different structural elements and their dimensions for a particular fire resistance rating of a building.
- **CO3**:To understand the design concept of fire walls, fire screens, local barriers and fire doors and able to select them appropriately to prevent fire spread.
- **CO4**:To decide the method of fire protection to RCC, steel, and wooden structural elements and their repair methods if damaged due to fire.
- **CO5**:Describe the safety techniques and improve the analytical and intelligence to take the right decision at right time.

TEXT BOOKS

- 1. Roytman, M. Y,"Principles of fire safety standards for building construction". Amerind Publishing Co. Pvt. Ltd., New Delhi,1975
- 2. John A. Purkiss, "Fire safety engineering design of structures" (2nd edn.), Butterworth Heinemann, Oxford, UK, 2009.

- 1. Smith, E.E. and Harmathy, T.Z. (Editors),"Design of buildings for fire safety". ASTM Special Publication 685, American Society for Testing and Materials, Boston, U.S.A,1979.
- 2. Butcher, E. G. and Parnell, A. C, "Designing of fire safety". JohnWiley and Sons Ltd., New York,

U.S.A.1983.

- 3. Jain, V.K,"Fire safety in buildings" (2nd edn.). New Age International(P) Ltd., New Delhi,2010. 4. Hazop&Hazan,"Identifying and Assessing Process Industry Hazards", Fourth Edition ,1999
- 4. Frank R. Spellman, Nancy E. Whiting,"The Handbook of Safety Engineering: Principles and Applications", 2009

CO's-PO's & PSO's MAPPING

	PO's												PSO'	S	
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	-	1	-	-	1	-	-	-	-	-	-	-	-	-
2	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-
3	1	-	2	-	-	-	3	-	-	1	-	-	-	-	-
4	-	-	-	-	-	1	1	-	-	-	-	-	-	-	-
5	2	-	1	-	-	1	1	1	-	1	-	1	-	-	-
AVg.	1.3	-	1.75	-	-	1	1.3	1		1	-	1	-	-	-

OML351

INTRODUCTION TO NON-DESTRUCTIVE TESTING

L T P C 3 0 0 3

COURSE OBJECTIVES:

The main learning objective of this course is to prepare the students for:

- Understanding the basic importance of NDT in quality assurance.
- Imbibing the basic principles of various NDT techniques, its applications, limitations, codes and standards.
- Equipping themselves to locate a flaw in various materials, products.
- Applying apply the testing methods for inspecting materials in accordance with industry specifications and standards.
- Acquiring the knowledge on the selection of the suitable NDT technique for a given application

UNIT I INTRODUCTION TO NDT & VISUAL TESTING

9

Concepts of Non-destructive testing-relative merits and limitations-NDT Versus mechanical testing, Fundamentals of Visual Testing – vision, lighting, material attributes, environmental factors, visual perception, direct and indirect methods – mirrors, magnifiers, boroscopes and fibroscopes – light sources and special lighting.

UNIT II LIQUID PENETRANT & MAGNETIC PARTICLE TESTING

9

Liquid Penetrant Inspection: principle, applications, advantages and limitations, dyes, developers and cleaners, Methods & Interpretation.

Magnetic Particle Inspection: Principles, applications, magnetization methods, magnetic particles, Testing Procedure, demagnetization, advantages and limitations, – Interpretation and evaluation of test indications.

UNIT III EDDY CURRENT TESTING & THERMOGRAPHY

9

Eddy Current Testing: Generation of eddy currents— properties— eddy current sensing elements, probes, Instrumentation, Types of arrangement, applications, advantages, limitations — Factors affecting sensing elements and coil impedance, calibration, Interpretation/Evaluation.

Thermography- Principle, Contact & Non-Contact inspection methods, Active & Passive methods, Liquid Crystal – Concept, example, advantages & limitations. Electromagnetic spectrum, infrared thermography- approaches, IR detectors, Instrumentation and methods, applications.

UNIT IV ULTRASONIC TESTING & AET

9

Ultrasonic Testing: Types of ultrasonic waves, characteristics, attenuation, couplants, probes, EMAT. Inspection methods-pulse echo, transmission and phased array techniques, types of scanning and displays, angle beam inspection of welds, time of flight diffraction (TOFD) technique, Thickness determination by ultrasonic method, Study of A, B and C scan presentations, calibration. Acoustic Emission Technique – Introduction, Types of AE signal, AE wave propagation, Source location, Kaiser effect, AE transducers, Principle, AE parameters, AE instrumentation, Advantages & Limitations, Interpretation of Results, Applications.

UNIT V RADIOGRAPHY TESTING

9

Sources-X-rays and Gamma rays and their characteristics-absorption, scattering. Filters and screens, Imaging modalities-film radiography and digital radiography (Computed, Direct, Real Time, CT scan). Problems in shadow formation, exposure factors, inverse square law, exposure charts, Penetrameters, safety in radiography.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of this course, the students will be able to

- 1. Realize the importance of NDT in various engineering fields.
- 2. Have a basic knowledge of surface NDE techniques which enables to carry out various inspection in accordance with the established procedures.
- 3. Calibrate the instrument and inspect for in-service damage in the components by means of Eddy current testing as well as Thermography testing.
- 4. Differentiate various techniques of UT and AET and select appropriate NDT methods for better evaluation.
- 5. Interpret the results of Radiography testing and also have the ability to analyse the influence of various parameters on the testing.

TEXT BOOKS:

- 1. Baldev Raj, T. Jayakumar and M. Thavasimuthu, Practical Non Destructive Testing, Alpha Science International Limited, 3rd edition, 2002.
- 2. J. Prasad and C. G. K. Nair, Non-Destructive Test and Evaluation of Materials, Tata McGraw-Hill Education, 2nd edition, 2011.
- 3. Ravi Prakash, "Non-Destructive Testing Techniques", 1st revised edition, New Age International Publishers, 2010.

- 1. ASM Metals Handbook, V-17, "Nondestructive Evaluation and Quality Control", American Society of Metals, USA, 2001.
- 2. Barry Hull and Vernon John, "Nondestructive Testing", Macmillan, 1989.
- 3. Chuck Hellier, "Handbook of Nondestructive Evaluation", Mc Graw Hill, 2012.
- 4. Louis Cartz, "Nondestructive Testing", ASM International, USA, 1995.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
C01	2	2	2	3			2	2				2	1	2	
C02	3	1	2	2			2	2				2	2	2	1
C03	3	2	1	2			2	2				2	2	2	
CO4	3	1	2	2			2	2				2	2	2	2
CO5	3	2	2	2			2	2		·		2	2	2	1
Avg	2.8	1.6	1.8	2.2			2	2				2	1.8	2	1.3

COURSE OBJECTIVES:

The main learning objective of this course is to prepare the students for:

- 1. Selecting sensors to develop mechatronics systems.
- 2. Explaining the architecture and timing diagram of microprocessor, and also interpret and develop programs.
- 3. Designing appropriate interfacing circuits to connect I/O devices with microprocessor.
- 4. Applying PLC as a controller in mechatronics system.
- 5. Designing and develop the apt mechatronics system for an application.

UNIT – I INTRODUCTION AND SENSORS

q

Introduction to Mechatronics – Systems – Need for Mechatronics – Emerging areas of Mechatronics – Classification of Mechatronics. Sensors and Transducers: Static and Dynamic Characteristics of Sensor, Potentiometers – LVDT – Capacitance Sensors – Strain Gauges – Eddy Current Sensor – Hall Effect Sensor – Temperature Sensors – Light Sensors.

UNIT – II 8085 MICROPROCESSOR

9

Introduction – Pin Configuration - Architecture of 8085 – Addressing Modes – Instruction set, Timing diagram of 8085.

UNIT – III PROGRAMMABLE PERIPHERAL INTERFACE

9

Introduction – Architecture of 8255, Keyboard Interfacing, LED display – Interfacing, ADC and DAC Interface, Temperature Control – Stepper Motor Control – Traffic Control Interface.

UNIT – IV PROGRAMMABLE LOGIC CONTROLLER

Q

Introduction – Architecture – Input / Output Processing – Programming with Timers, Counters and Internal relays – Data Handling – Selection of PLC.

UNIT – V ACTUATORS AND MECHATRONICS SYSTEM DESIGN

9

TOTAL: 45 PERIODS

Types of Stepper and Servo motors – Construction – Working Principle – Characteristics, Stages of Mechatronics Design Process – Comparison of Traditional and Mechatronics Design Concepts with Examples – Case studies of Mechatronics Systems – Pick and Place Robot – Engine Management system – Automatic Car Park Barrier.

COURSE OUTCOMES

Upon successful completion of the course, students should be able to:

- CO1: Select sensors to develop mechatronics systems.
- CO2: Explain the architecture and timing diagram of microprocessor, and also interpret and develop programs.
- CO3: Design appropriate interfacing circuits to connect I/O devices with microprocessor.
- CO 4: Apply PLC as a controller in mechatronics system.
- CO 5: Design and develop the apt mechatronics system for an application.

			Мар	ping	of C	Os v	vith F	POs	and F	PSOs					
COs/POs &							POs	5					PS	Os	
PSOs	1	1 2 3 4 5 6 7 8 9 10 11 1												2	3
CO1	3	2	1	3		2						2	3	2	3
CO2	3	2	1	3		2						2	3	2	3
CO3	3	2	1	3		2						2	3	2	3
CO4	3	2	1	3		2						2	3	2	3
CO5	3	2	1	3		2						2	3	2	3

CO/PO & PSO Average	3	2	1	3		2					2	3	2	3
		•	1 – S	light,	2 – [Mode	rate,	3 – 5	Subst	antial				

TEXT BOOKS

- 1. Bolton W., "Mechatronics", Pearson Education, 6th Edition, 2015.
- 2. Ramesh S Gaonkar, "Microprocessor Architecture, Programming, and Applications with the 8085", Penram International Publishing Private Limited, 6th Edition, 2013.

REFERENCES

- 1. Bradley D.A., Dawson D., Buru N.C. and Loader A.J., "Mechatronics", Chapman and Hall, 1993.
- 2. Davis G. Alciatore and Michael B. Histand, "Introduction to Mechatronics and Measurement systems", McGraw Hill Education, 2011.
- 3. Devadas Shetty and Richard A. Kolk, "Mechatronics Systems Design", Cengage Learning, 2010.
- 4. Nitaigour Premchand Mahalik, "Mechatronics Principles, Concepts and Applications", McGraw Hill Education, 2015.
- 5. Smaili. A and Mrad. F, "Mechatronics Integrated Technologies for Intelligent Machines", Oxford University Press, 2007.

COURSE OBJECTIVES:

ORA351

FOUNDATION OF ROBOTICS

L T P C 3 0 0 3

- 1. To study the kinematics, drive systems and programming of robots.
- 2. To study the basics of robot laws and transmission systems.
- 3. To familiarize students with the concepts and techniques of robot manipulator, its kinematics.
- 4. To familiarize students with the various Programming and Machine Vision application in robots.
- 5. To build confidence among students to evaluate, choose and incorporate robots in engineering systems.

UNIT – I FUNDAMENTALS OF ROBOT

9

Robot – Definition – Robot Anatomy – Co-ordinate systems, Work Envelope, types and classification – specifications – Pitch, yaw, Roll, Joint Notations, Speed of Motion, Pay Load – Robot Parts and their functions – Need for Robots – Different Applications.

UNIT - II ROBOT KINEMATICS

9

Forward kinematics, inverse kinematics and the difference: forward kinematics and inverse Kinematics of Manipulators with two, three degrees of freedom (in 2 dimensional), four degrees of freedom (in 3 dimensional) – derivations and problems. Homogeneous transformation matrices, translation and rotation matrices.

UNIT – III ROBOT DRIVE SYSTEMS AND END EFFECTORS

9

Pneumatic Drives – Hydraulic Drives – Mechanical Drives – Electrical Drives – D.C. Servo Motors, Stepper Motor, A.C. Servo Motors – Salient Features, Applications and Comparison of All These Drives. End Effectors – Grippers – Mechanical Grippers, Pneumatic and Hydraulic Grippers, Magnetic grippers, vacuum grippers, internal grippers and external grippers, selection and design considerations of a gripper

Force sensors, touch and tactile sensors, proximity sensors, non-contact sensors, safety considerations in robotic cell, proximity sensors, fail safe hazard sensor systems, and compliance mechanism. Machine vision system - camera, frame grabber, sensing and digitizing image data – signal conversion, image storage, lighting techniques, image processing and analysis – data reduction, segmentation, feature extraction, object recognition, other algorithms, applications – Inspection, identification, visual serving and navigation.

UNIT – V PROGRAMMING AND APPLICATIONS OF ROBOT

9

Teach pendant programming, lead through programming, robot programming languages – VAL programming – Motion Commands, Sensors commands, End-Effector Commands, and simple programs - Role of robots in inspection, assembly, material handling, underwater, space and medical fields.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of the course, students will be able to:

CO1: Interpret the features of robots and technology involved in the control.

CO2: Apply the basic engineering knowledge and laws for the design of robotics.

CO3: Explain the basic concepts like various configurations, classification and parts of end effectors compare various end effectors and grippers and tools and sensors used in robots.

CO4: Explain the concept of kinematics, degeneracy, dexterity and trajectory planning.

CO5: Demonstrate the image processing and image analysis techniques by machine vision system.

		M	appi	ing c	of CC	Os w	ith F	POs a	and	PSO	S				
COs/POs&						Р	Os						P	SOs	
PSOs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	1								1			3
CO2	3	2	1	1		1			3						
CO3	3	2	1	1		1			3						
CO4	3	2	1	1								1			3
CO5	3	2	1	1								1			3
CO/PO &															
PSO															
Average															
		1 -	- Sliç	ght, 2	2 – N	1ode	rate,	3 – 3	Sub	stanti	al				

TEXT BOOKS:

- 1. Ganesh.S.Hedge,"A textbook of Industrial Robotics", Lakshmi Publications, 2006.
- 2. Mikell.P.Groover, "Industrial Robotics Technology, Programming and applications" McGraw Hill 2ND edition 2012.

- 1. Fu K.S. Gonalz R.C. and ice C.S.G."Robotics Control, Sensing, Vision and Intelligence", McGraw Hill book co. 2007.
- 2. YoramKoren, "Robotics for Engineers", McGraw Hill Book, Co., 2002.
- 3. Janakiraman P.A., "Robotics and Image Processing", Tata McGraw Hill 2005.
- 4. John. J.Craig, "Introduction to Robotics: Mechanics and Control" 2nd Edition, 2002.
- 5. Jazar, "Theory of Applied Robotics: Kinematics, Dynamics and Control", Springer India reprint, 2010.

OBJECTIVES:

- To introduce the concepts of remote sensing processes and its components.
- To expose the various remote sensing platforms and sensors and to introduce the elements of data interpretation

UNIT I REMOTE SENSING AND ELECTROMAGNETIC RADIATION

Definition – components of RS – History of Remote Sensing – Merits and demerits of data collation between conventional and remote sensing methods - Electromagnetic Spectrum – Radiation principles - Wave theory, Planck's law, Wien's Displacement Law, Stefan's Boltzmann law, Kirchoff's law – Radiation sources: active & passive - Radiation Quantities

UNIT II EMR INTERACTION WITH ATMOSPHERE AND EARTH MATERIAL 9

Standard atmospheric profile – main atmospheric regions and its characteristics – interaction of radiation with atmosphere – Scattering, absorption and refraction – Atmospheric windows - Energy balance equation – Specular and diffuse reflectors – Spectral reflectance & emittance – Spectroradiometer – Spectral Signature concepts – Typical spectral reflectance curves for vegetation, soil and water – solid surface scattering in microwave region.

UNIT III ORBITS AND PLATFORMS

9

Motions of planets and satellites – Newton's law of gravitation - Gravitational field and potential - Escape velocity - Kepler's law of planetary motion - Orbit elements and types – Orbital perturbations and maneuvers – Types of remote sensing platforms - Ground based, Airborne platforms and Space borne platforms – Classification of satellites – Sun synchronous and Geosynchronous satellites – Lagrange Orbit.

UNIT IV SENSING TECHNIQUES

9

Classification of remote sensors – Resolution concept: spatial, spectral, radiometric and temporal resolutions - Scanners - Along and across track scanners – Optical-infrared sensors – Thermal sensors – microwave sensors – Calibration of sensors - High Resolution Sensors - LIDAR, UAV – Orbital and sensor characteristics of live Indian earth observation satellites

UNIT V DATA PRODUCTS AND INTERPRETATION

9

Photographic and digital products – Types, levels and open source satellite data products – selection and procurement of data– Visual interpretation: basic elements and interpretation keys - Digital interpretation – Concepts of Image rectification, Image enhancement and Image classification

TOTAL:45 PERIODS

COURSE OUTCOMES:

On completion of the course, the student is expected to

- CO 1 Understand the concepts and laws related to remote sensing
- CO 2 Understand the interaction of electromagnetic radiation with atmosphere and earth material
- CO 3 Acquire knowledge about satellite orbits and different types of satellites
- **CO 4** Understand the different types of remote sensors
- **CO 5** Gain knowledge about the concepts of interpretation of satellite imagery

TEXT BOOKS:

- 1. Thomas M.Lillesand, Ralph W. Kiefer and Jonathan W. Chipman, Remote Sensing and Image interpretation, John Wiley and Sons, Inc, New York, 2015.
- 2. George Joseph and C Jeganathan, Fundamentals of Remote Sensing, Third Edition Universities Press (India) Private limited, Hyderabad, 2018

REFERENCES:

- 1. Janza, F.Z., Blue H.M. and Johnson, J.E. Manual of Remote Sensing. Vol.1, American Society of Photogrametry, Virginia, USA, 2002.
- 2. Verbyla, David, Satellite Remote Sensing of Natural Resources. CRC Press, 1995
- 3. Paul Curran P.J. Principles of Remote Sensing. Longman, RLBS, 1988.
- 4. Introduction to Physics and Techniques of Remote Sensing, Charles Elachi and JacobVan Zyl, 2006 Edition II, Wiley Publication.
- 1. 5. Basudeb Bhatta, Remote Sensing and GIS, Oxford University Press, 2011

CO-PO MAPPING

			Cour	se Out	come		
PO	Graduate Attribute	CO1	CO2	CO3	CO4	CO5	Average
PO1	Engineering Knowledge	3	3	3	3	3	3
PO2	Problem Analysis				3	3	3
PO3	Design/Development of Solutions				3	3	3
PO4	Conduct Investigations of Complex Problems				3	3	3
PO5	Modern Tool Usage				3	3	3
PO6	The Engineer and Society						
PO 7	Environment and Sustainability						
PO 8	Ethics						
PO 9	Individual and Team Work						
PO 10	Communication						
PO 11	Project Management and Finance						
PO 12	Life-long Learning	3		3	3	3	3
PSO 1	Knowledge of Geoinformatics discipline	3	3	3	3	3	3
PSO 2	Critical analysis of Geoinformatics Engineering problems and innovations	3	3	3	3	3	3
PSO 3	Conceptualization and evaluation of Design solutions	3	3	3	3	3	3

OAI351

URBAN AGRICULTURE

LTPC 3 0 0 3

OBJECTIVES:

- To introduce the students the principles of agricultural crop production and the production practices of crops in modern ways.
- To delineate the role of agricultural engineers in relation to various crop production practices.

UNIT I INTRODUCTION

9

Benefits of urban agriculture- economic benefits, environmental benefits, social and cultural benefits, educational, skill-building and job training benefits, health, nutrition and food accessibility benefits.

UNIT II VERTICAL FARMING

9

Vertical farming- types, green facade, living/green wall-modular green wall, vegetated mat wall-Structures and components for green wall system: plant selection, growing media, irrigation and plant nutrition: Design, light, benefits of vertical gardening. Roof garden and its types. Kitchen garden, hanging baskets: The house plants/ indoor plants

UNIT III SOIL LESS CULTIVATION

Hydroponics, aeroponics, aquaponics: merits and limitations, costs and Challenges, backyard gardens- tactical gardens- street landscaping- forest gardening, greenhouses, urban beekeeping

UNIT IV MODERN CONCEPTS

9

Growth of plants in vertical pipes in terraces and inside buildings, micro irrigation concepts suitable for roof top gardening, rain hose system, Green house, polyhouse and shade net system of crop production on roof tops

UNIT V WASTE MANAGEMENT

9

Concept, scope and maintenance of waste management- recycle of organic waste, garden wastes- solid waste management-scope, microbiology of waste, other ingredients like insecticide, pesticides and fungicides residues, waste utilization.

TOTAL: 45 PERIODS

COURSE OUTCOMES

- 1. Demonstrate the principles behind crop production and various parameters that influences the crop growth on roof tops
- 2. Explain different methods of crop production on roof tops
- 3. Explain nutrient and pest management for crop production on roof tops
- 4. Illustrate crop water requirement and irrigation water management on roof tops
- 5. Explain the concept of waste management on roof tops

TEXT BOOKS:

- 1. Martellozzo F and J S Landry. 2020. Urban Agriculture. Scitus Academics Llc.
- 2. Rob Roggema. 2016. Sustainable Urban Agriculture and Food Planning. Routledge Taylor and Francis Group.
- 3. Akrong M O. 2012. Urban Agriculture. LAP Lambert Academic Publishing.

REFERENCES:

- 1. Agha Rokh A. 2008. Evaluation of ornamental flowers and fishes breeding in Bushehr urban wastewater using a pilot-scale aquaponic system. Water and Wastewater, 19 (65): 47–53.
- Agrawal M, Singh B, Rajput M, Marshall F and Bell J. N. B. 2003. Effect of air pollution on periurban agriculture: A case study. Environmental Pollution, 126 (3): 323–329. https://www.sciencedirect.com/science/article/pii/S0269749103002458#aep-section-id24.
- 3. Jac Smit and Joe Nasr. 1992. Urban agriculture for sustainable cities: using wastes and idle land and water bodies as resources. Environment and Urbanization, 4 (2):141-152.

CO-PO MAPPING

PO/PSO		CO1	CO2	CO3	CO4	CO5	Overall correlation of COs with POs
PO1	Engineering Knowledge	1	2	1	1	2	1
PO2	Problem Analysis	1	1	1	1	1	2
PO3	Design/ Development of Solutions	1	2	1	1	3	2
PO4	Conduct Investigations of Complex Problems	1	1	2	2	1	1
PO5	Modern Tool Usage	1	2	1	1	1	2
PO6	The Engineer and Society	1	2	1	2	1	1
PO7	Environment and sustainability	1	2	1	1	2	1
PO8	Ethics	2	1	1	1	2	1
PO9	Individual and team work:	1	1	2	1	1	1
PO10	Communication	1	2	1	1	2	1
PO11	Project management and finance	1	1	1	1	1	2

PO12	Life-long learning:	1	2	1	1	3	2
PSO1	To make expertise in design and engineering problem solving approach in agriculture with proper knowledge and skill	1	2	1	1	2	1
PSO2	To enhance students ability to formulate solutions to real-world problems pertaining to sustained agricultural productivity using modern technologies.	2	1	2	1	1	1
PSO3	To inculcate entrepreneurial skills through strong Industry-Institution linkage.	1	2	1	2	1	2

OEN351 DRINKING WATER SUPPLY AND TREATMENT

LTPC 3 0 0 3

OBJECTIVES:

To equip the students with the principles and design of water treatment units and distribution system.

UNIT I **SOURCES OF WATER**

Public water supply system - Planning, Objectives, Design period, Population forecasting; Water demand - Sources of water and their characteristics, Surface and Groundwater - Impounding Reservoir - Development and selection of source - Source Water quality - Characterization -Significance – Drinking Water quality standards.

UNIT II **CONVEYANCE FROM THE SOURCE**

Water supply – intake structures – Functions; Pipes and conduits for water – Pipe materials – Hydraulics of flow in pipes - Transmission main design - Laying, jointing and testing of pipes appurtenances – Types and capacity of pumps – Selection of pumps and pipe materials.

WATER TREATMENT

Objectives – Unit operations and processes – Principles, functions, and design of water treatment plant units, aerators of flash mixers, Coagulation and flocculation -- sand filters - Disinfection --Construction, Operation and Maintenance aspects.

UNIT IV ADVANCED WATER TREATMENT

Water softening - Desalination- R.O. Plant - demineralization - Adsorption - Ion exchange-Membrane Systems - Iron and Manganese removal - Defluoridation - Construction and Operation and Maintenance aspects

WATER DISTRIBUTION AND SUPPLY **UNIT V**

TOTAL: 45 PERIODS

Requirements of water distribution - Components - Selection of pipe material - Service reservoirs -Functions - Network design - Economics - Computer applications - Appurtenances - Leak detection - Principles of design of water supply in buildings - House service connection -Fixtures and fittings, systems of plumbing and types of plumbing.

health

OUTCOMES CO1: an understanding of water quality criteria and standards, and their relation to public

CO2: the ability to design the water conveyance system

CO3: the knowledge in various unit operations and processes in water treatment

CO4: an ability to understand the various systems for advanced water treatment

CO5: an insight into the structure of drinking water distribution system

TEXT BOOKS:

- 1. Garg. S.K., "Water Supply Engineering", Khanna Publishers, Delhi, September 2008.
- 2. Punmia B.C, Arun K.Jain, Ashok K.Jain, "Water supply Engineering" Lakshmi publication private limited, New Delhi, 2016.
- 3. Rangwala "Water Supply and Sanitary Engineering", February 2022
- 4. Birdie.G.S., "Water Supply and Sanitary Engineering", Dhanpat Rai and sons, 2018.

REFERENCES:

- 1. Fair. G.M., Geyer.J.C., "Water Supply and Wastewater Disposal", John Wiley and Sons, 1954.
- 2. Babbit.H.E, and Donald.J.J, "Water Supply Engineering", McGraw Hill book Co, 1984.
- 3. Steel. E.W.et al., "Water Supply Engineering", Mc Graw Hill International book Co, 1984.
- 4. Duggal. K.N., "Elements of public Health Engineering", S.Chand and Company Ltd, New Delhi, 1998.

CO's-PO's & PSO's MAPPING

	PO's												PSO's	S	
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		3						3		3			3		
2		3		2		2				3			3		
3				2		2				3			3		
4			3	2				3	2	3			3		
5			3	2			1		2	3		1			
Avg.		3	3	2		2	1	3	2	3		1	3		

1.low, 2-medium, 3-high, '-"- no correlation

Note: The average value of this course to be used for program articulation matrix.

OEE352

ELECTRIC VEHICLE TECHNOLOGY

LTPC 3003

COURSE OBJECTIVES

- To provide knowledge about electric machines and special machine
- To understand the basics of power converters
- To know the concepts of controlling DC and AC drive systems
- To understand the architecture and power train components.
- To impart knowledge on vehicle control for standard drive cycles of hybrid electrical vehicles (HEVs)

UNIT I ROTATING POWER CONVERTERS

ç

Magnetic circuits- DC machine and AC machine –Working principle of Generator and Motor-DC and AC - Voltage and torque equations – Characteristics and applications. Working principle of special machines like: Brushless DC motor, Switched reluctance motor and PMSM.

Working and Characteristics of Power Diodes, MOSFET and IGBT. Working of uncontrolled rectifiers, controlled rectifiers (Single phase and Three phase), DC choppers, single and three phase inverters, Multilevel inverters and Matrix Converters.

UNIT III CONTROL OF DC AND AC MOTOR DRIVES

9

Speed control for constant torque, constant HP operation of all electric motors - DC/DC chopper based four quadrant operation of DC motor drives, inverter based V/f Operation (motoring and braking) of induction motor drives, Transformation theory, vector control operation of Induction motor and PMSM, Brushless DC motor drives, Switched reluctance motor (SRM) drives

UNIT IV HYBRID ELECTRIC VEHICLE ARCHITECTURE AND POWER TRAIN COMPONENTS

9

History of evolution of Electric Vehicles - Comparison of Electric Vehicles with Internal Combustion Engines - Architecture of Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV) – Plug-in Hybrid Electric Vehicles (PHEV)- Power train components and sizing, Gears, Clutches, Transmission and Brakes.

UNIT V MECHANICS OF HYBRID ELECTRIC VEHICLES AND CONTROL OF VEHICLES

9

TOTAL: 45 PERIODS

Fundamentals of vehicle mechanics - tractive force, power and energy requirements for standard drive cycles of HEV's - motor torque and power rating and battery capacity. HEV supervisory control - Selection of modes - power spilt mode - parallel mode - engine brake mode - regeneration mode - series parallel mode

COURSE OUTCOMES:

CO1: Able to understand the principles of conventional and special electrical machines.

CO2: Acquired the concepts of power devices and power converters

CO3: Able to understand the control for DC and AC drive systems.

CO4: Learned the electric vehicle architecture and power train components.

CO5: Acquired the knowledge of mechanics of electric vehicles and control of electric vehicles.

	PO 1	PO2	PO3	PO4	PO5	PO6	P07	PO 8	PO 9	PO 10	PO 11	PO 12	PS 01	PS O2	PS O3
CO1	3	2			3								3	3	3
CO2	3	2	2			3			3				3	3	3
CO3	3			3		2	2						3	3	3
CO4	3	2	2		3								3	3	3
CO5	3		2								2		3	3	3
Avg	3	2	2	3	3	1	2		3		2		3	3	3

- 1 Stephen D. Umans, "Fitzgerald & Kingsley's Electric Machinery", Tata McGraw Hill, 7th Edition, 2020.
- 2 Bogdan M. Wilamowski, J. David Irwin, The Industrial Electronics Handbook, Second Edition, Power Electronics and Motor Drives, CRC Press, 2011
- Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, Steven D. Pekarek "Analysis of Electric Machinery and Drive Systems", 3rd Edition, Wiley-IEEE Press, 2013.
- 4 Rashid M.H., "Power Electronics Circuits, Devices and Applications ", Pearson, fourth Edition, 10th Impression 2021.
- 5 Igbal Husain, 'Electric and Hybrid Electric Vehicles', CRC Press, 2021.
- 6 Wei Liu, 'Hybrid Electric Vehicle System Modeling and Control', Second Edition, WILEY, 2017
- 7 James Larminie and John Lowry, 'Electric Vehicle Technology Explained', Second Edition, Wiley, 2012

COURSE OBJECTIVES:

- 1. Understand basic PLC terminologies digital principles, PLC architecture and operation.
- 2. Familiarize different programming language of PLC.
- 3. Develop PLC logic for simple applications using ladder logic.
- 4. Understand the hardware and software behind PLC and SCADA.
- 5. Exposures about communication architecture of PLC/SCADA.

UNIT I INTRODUCTION TO PLC

9

Introduction to PLC: Microprocessor, I/O Ports, Isolation, Filters, Drivers, Microcontrollers/DSP, PLC/DDC- PLC Construction: What is a PLC, PLC Memories, PLC I/O, , PLC Special I/O, PLC Types.

UNIT II PLC INSTRUCTIONS

9

PLC Basic Instructions: PLC Ladder Language- Function block Programming- Ladder/Function Block functions- PLC Basic Instructions, Basic Examples (Start Stop Rung, Entry/Reset Rung)-Configuration of Sensors, Switches, Solid State Relays-Interlock examples- Timers, Counters, Examples.

UNIT III PLC PROGRAMMING

9

Different types of PLC program, Basic Ladder logic, logic functions, PLC module addressing, registers basics, basic relay instructions, Latching Relays, arithmetic functions, comparison functions, data handling, data move functions, timer-counter instructions, input-output instructions, sequencer instructions

UNIT IV COMMUNICATION OF PLC AND SCADA

9

Communication Protocol – Modbus, HART, Profibus- Communication facilities SCADA: - Hardware and software, Remote terminal units, Master Station and Communication architectures

UNIT V CASE STUDIES

9

Stepper Motor Control- Elevator Control-CNC Machine Control- conveyor control-Interlocking Problems

TOTAL:45 PERIODS

SKILL DEVELOPMENT ACTIVITIES (Group Seminar/Mini Project/Assignment/Content Preparation / Quiz/ Surprise Test / Solving GATE questions/ etc) 5

- 1. Market survey of the recent PLCs and comparison of their features.
- 2. Summarize the PLC standards
- 3. Familiarization of any one programming language (Ladder diagram/ Sequential Function Chart/ Function Block Diagram/ Equivalent open source software)
- 4. Market survey of Communication Network Used for PLC/SCADA.

COURSE OUTCOMES:

- **CO1** Know the basic requirement of a PLC input/output devices and architecture. (L1)
- CO2 Ability to apply Basics Instruction Sets used for ladder Logic and Function Block Programming.(L2)
- CO3 Ability to design PLC Programmes by Applying Timer/Counter and Arithmetic and Logic Instructions Studied for Ladder Logic and Function Block.(L3)
- **CO4** Able to develop a PLC logic for a specific application on real world problem. (L5)
- CO5 Ability to Understand the Concepts of Communication used for PLC/SCADA.(L1)

TEXT BOOKS:

1. Frank Petruzzula, Programmable Logic Controllers, Tata Mc-Graw Hill Edition

2. John W. Webb, Ronald A. Reis, Programmable Logic Controllers Principles and Applications, PHI publication

REFERENCES:

- 1. MadhuchanndMitra and SamerjitSengupta, Programmable Logic Controllers Industrial Automation an Introduction, Penram International Publishing Pvt. Ltd.
- 2. J. R. Hackworth and F. D. Hackworth, Programmable Logic Controllers Principles and Applications, Pearson publication

List of Open Source Software/ Learning website:

- 1. https://nptel.ac.in/courses/108105063
- 2. https://www.electrical4u.com/industrial-automation/
- 3. https://www.etf.ues.rs.ba/~slubura/Procesni%20racunari/Programmable%20Logic%20Controllers%20Programming%20Methods.pdf
- 4. https://www.electrical4u.com/industrial-automation/

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

PO, PSO CO	PO 01	PO 02	PO 03	PO 04	PO 05	PO 06	PO 07	PO 08	PO 09	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	2	1					1		1					
CO2	3	3	2					1		1	2				2
CO3	3	3	3	3	1			1		1					
CO4	3	3		3	3			1		1			3	3	
CO5	3	3	3	2	1			1		1			3	3	3
Avg	3	2.9	2.25	2.6	1.6			1		1			3	3	2.9

OCH351 NANO TECHNOLOGY

L T PC 3 0 03

UNIT I INTRODUCTION

J _

General definition and size effects-important nano structured materials and nano particles-importance of nano materials- Size effect on thermal, electrical, electronic, mechanical, optical and magnetic properties of nanomaterials- surface area - band gap energy and applications. Photochemistry and Electrochemistry of nanomaterials —lonic properties of nanomaterials- Nano catalysis.

UNIT II SYNTHESIS OF NANOMATERIALS

8

Bottom up and Top-down approach for obtaining nano materials - Precipitation methods – sol gel technique – high energy ball milling, CVD and PVD methods, gas phase condensation, magnetron sputtering and laser deposition methods – laser ablation, sputtering.

UNIT III NANO COMPOSITES

10

10

Definition- importance of nanocomposites- nano composite materials-classification of compositesmetal/metal oxides, metal-polymer- thermoplastic based, thermoset based and elastomer basedinfluence of size, shape and role of interface in composites applications.

UNIT IV NANO STRUCTURES AND CHARACTERIZATION TECHNIQUES

Classifications of nanomaterials - Zero dimensional, one-dimensional and two-dimensional nanostructures- Kinetics in nanostructured materials- multilayer thin films and superlattice- clusters of metals, semiconductors and nanocomposites. Spectroscopic techniques, Diffraction methods, thermal analysis method, BET analysis method.

UNIT V **APPLICATIONS OF NANO MATERIALS**

Overview of nanomaterials properties and their applications, nano painting, nano coating, nanomaterials for renewable energy, Molecular Electronics and Nanoelectronics - Nanobots-Biological Applications. Emerging technologies for environmental applications- Practice of nanoparticles for environmental remediation and water treatment.

TOTAL: 45 PERIODS

OUTCOMES:

- CO1 understand the basic properties such as structural, physical, chemical properties of nanomaterials and their applications.
- CO2 able to acquire knowledge about the different types of nano material synthesis
- CO3 describes about the shape, size, structure of composite nano materials and their interference
- CO4 understand the different characterization techniques for nanomaterials
- CO5 develop a deeper knowledge in the application of nanomaterials in different fields.

TEXT BOOKS

- 1. Mick Wilson, Kamali Kannangara, Geoff Smith, Michelle Simmom, Burkhard Raguse, "Nano Technology: Basic Science & Engineering Technology", 2005, Overseas Press
- 2. G. Cao, "Nanostructures & Nanomaterials: Synthesis, Properties & Applications" Imperial College Press, 2004
- 3. William A Goddard "Handbook of Nanoscience, Engineering and Technology", 3rd Edition, CRC Taylor and Francis group 2012.

REFERENCES

- 1. R.H.J.Hannink & A.J.Hill, Nanostructure Control, Wood Head Publishing Ltd., Cambridge,
- 2. C.N.R.Rao, A.Muller, A.K.Cheetham, The Chemistry of Nanomaterials: Synthesis, Properties and Applications Vol. I & II, 2nd edition, 2005, Wiley VCH Verlag Gibtl & Co
- 3. Ivor Brodie and Julius J.Muray, 'The physics of Micro/Nano Fabrication', Springer International Edition, 2010

Course articulation matrix

Course		Program Outcome														
Course Outcomes	Statement	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9			PO 12	PS 01	PS O2	PS O3
CO1	understand the basic properties such as structural, physical, chemical properties of nanomaterials and their applications	2	3	2	3	3	-	-	-	1	1	-	3	1	1	3
CO2	acquire knowledge about the different types of nano material synthesis	2	3	1	3	3	-	-	-	1	1	-	3	2	1	3
CO3	describes about the shape, size,structure of composite nano materials and their interference	2	2	2	3	3	1	1	-	1	1	-	3	2	1	3
CO4	understand the different characterization techniques for nanomaterials	2	2	1	3	3	1	1	1	1	-	1	3	1	1	3
CO5	develop a deeper knowledge in the application of	2	2	1	3	3	1	1	1	1	-	1	3	2	1	3

nanomaterials in different fields															
Overall C	Э 3	2	2	1	3	3	1	1	1	1	1	1	3	2	1

OCH352

FUNCTIONAL MATERIALS

LT P C 3 0 0 3

OBJECTIVE:

• The course emphasis on the molecular safe assembly and materials for polymer electronics

UNIT I INTRODUCTION

9

Historical Perspectives, Lessons from the Nature, Engineering the Functions, Tuning the functions, Multiscale Modeling and Computation, Classification of Functional Materials, Functional Diversity of Materials, Hybrid Materials, Technological Relevance, Societal Impact.

UNIT II MOLECULAR SELF ASSEMBLY

9

Molecular Organization, Self-Assembly in Biology, Energetics of Self-Organization, A Few Case Studies, Synthetic Protocols and Challenges, Solvent-assisted Self-Assembly, Directed Assembly-Langmuir-Blodgett and Langmuir-Schaefer techniques, Technological Applications of SAMs.

UNIT III BIO-INSPIRED MATERIALS

Q

Bio-inspired materials, Classification, Biomimicry, Spider Silk, Lotus Leaf, Gecko feet, Synovial fluid, 'Bionics'-Bio-inspired Information Technologies, Artificial Sensory Organs, Biomineralization- En route to Nanotechnology.

UNIT IV SMART OR INTELLIGENT MATERIALS

9

Criteria for Smartness, Significance of Smart Materials, Representative Examples like Smart Gels and Polymers, Electro/Magneto Rheological Fluids, Smart Electroceramics, Technical Limitations and Challenges, Functional Nanocomposites, Polymer-carbon nanotube composities.

UNIT V MATERIALS FOR POLYMER ELECTRONICS

9

Polymers for Electronics, Organic Light Emitting Diodes, Working Principle of OLEDs, Illustrated Examples, Organic Field-Effect Transistors Operating Principle, Design Considerations, Polymer FETs vs Inorganic FETs, Liquid Crystal Displays, Engineering Aspects of Flat Panel Displays, Intelligent Polymers for Data Storage, Polymer-based Data Storage-Principle, Magnetic Vs. Polymer-based Data Storage.

OUTCOME:

TOTAL: 45 PERIODS

 Students will be able to differentiate among various functional properties and select appropriate material for certain functional applications, analyze the nature and potential of functional material.

TEXT BOOK:

1. Vijayamohanan K. Pillai and MeeraParthasarathy, "Functional Materials: A chemist's perpective", Universities Press Hyderabad (2012).

REFERENCE:

1. Stephen Manne "Biomimetic Materials Chemistry" Wiley-VCH Newyork, 1966.

TRADITIONAL INDIAN FOODS

LTPC 3003

OBJECTIVE:

 To help students acquire a sound knowledge on diversities of foods, food habits and patterns in India with focus on traditional foods.

HISTORICAL AND CULTURAL PERSPECTIVES

Food production and accessibility - subsistence foraging, horticulture, agriculture and pastoralization, origin of agriculture, earliest crops grown. Food as source of physical sustenance, food as religious and cultural symbols; importance of food in understanding human culture variability, diversity, from basic ingredients to food preparation; impact of customs and traditions on food habits, heterogeneity within cultures (social groups) and specific social contexts - festive occasions, specific religious festivals, mourning etc. Kosher, Halal foods; foods for religious and other fasts.

UNIT II TRADITIONAL METHODS OF FOOD PROCESSING

Traditional methods of milling grains - rice, wheat and corn - equipments and processes as compared to modern methods. Equipments and processes for edible oil extraction, paneer, butter and ghee manufacture - comparison of traditional and modern methods. Energy costs, efficiency, yield, shelf life and nutrient content comparisons. Traditional methods of food preservation sundrying, osmotic drying, brining, pickling and smoking.

TRADITIONAL FOOD PATTERNS UNIT III

Typical breakfast, meal and snack foods of different regions of India. Regional foods that have gone Pan Indian / Global. Popular regional foods; Traditional fermented foods, pickles and preserves, beverages, snacks, desserts and sweets, street foods; IPR issues in traditional foods

COMMERCIAL PRODUCTION OF TRADITIONAL FOODS UNIT IV

Commercial production of traditional breads, snacks, ready-to-eat foods and instant mixes, frozen foods - types marketed, turnover; role of SHGs, SMES industries, national and multinational companies; commercial production and packaging of traditional beverages such as tender coconut water, neera, lassi, buttermilk, dahi. Commercial production of intermediate foods – ginger and garlic pastes, tamarind pastes, masalas (spice mixes), idli and dosa batters.

HEALTH ASPECTS OF TRADIONAL FOODS

Comparison of traditional foods with typical fast foods / junk foods - cost, food safety, nutrient composition, bioactive components; energy and environmental costs of traditional foods; traditional foods used for specific ailments /illnesses.

COURSE OUTCOMES:

TOTAL: 45 PERIODS

CO1To understand the historical and traditional perspective of foods and food habits CO2 To understand the wide diversity and common features of traditional Indian foods and meal patterns.

TEXT BOOKS:

- 1. Sen, Colleen Taylor "Food Culture in India" Greenwood Press, 2005.
- 2. Davidar, Ruth N. "Indian Food Science: A Health and Nutrition Guide to Traditional Recipes: East West Books, 2001.

OFD353

INTRODUCTION TO FOOD PROCESSING

LTPC 3003

OBJECTIVE:

• The course aims to introduce the students to the area of Food Processing. This is necessary for effective understanding of a detailed study of food processing and technology subjects. This course will enable students to appreciate the importance of food processing with respect to the producer, manufacturer and consumer.

UNIT I PROCESSING OF FOOD AND ITS IMPORTANCE

9

Source of food - plant, animal and microbial origin; different foods and groups of foods as raw materials for processing – cereals, pulses, grains, vegetables and fruits, milk and animal foods, sea weeds, algae, oil seeds & fats, sugars, tea, coffee, cocoa, spices and condiments, additives; need and significance of processing these foods.

UNIT II METHODS OF FOOD HANDLING AND STORAGE

9

Nature of harvested crop, plant and animal; storage of raw materials and products using low temperature, refrigerated gas storage of foods, gas packed refrigerated foods, sub atmospheric storage, Gas atmospheric storage of meat, grains, seeds and flour, roots and tubers; freezing of raw and processed foods.

UNIT III LARGE-SCALE FOOD PROCESSING

12

Milling of grains and pulses; edible oil extraction; Pasteurisation of milk and yoghurt; canning and bottling of foods; drying – Traditional and modern methods of drying, Dehydration of fruits, vegetables, milk, animal products etc; preservation by use of acid, sugar and salt; Pickling and curing with microorganisms, use of salt, and microbial fermentation; frying, baking, extrusion cooking, snack foods.

UNIT IV FOOD WASTES IN VARIOUS PROCESSES

6

Waste disposal-solid and liquid waste; rodent and insect control; use of pesticides; ETP; selecting and installing necessary equipment.

UNIT V FOOD HYGIENE

9

Food related hazards – Biological hazards – physical hazards – microbiological considerations in foods. Food adulteration – definition, common food adulterants, contamination with toxic metals, pesticides and insecticides; Safety in food procurement, storage handling and preparation; Relationship of microbes to sanitation, Public health hazards due to contaminated water and food; Personnel hygiene; Training& Education for safe methods of handling and processing food; sterilization and disinfection of manufacturing plant; use of sanitizers, detergents, heat, chemicals, Cleaning of equipment and premises.

COURSE OUTCOMES:

TOTAL: 45 PERIODS

On completion of the course the students are expected to

CO1 Be aware of the different methods applied to processing foods.

CO2 Be able to understand the significance of food processing and the role of foodand beverage industries in the supply of foods.

TEXT BOOKS/REFERENCES:

- 1. Karnal, Marcus and D.B. Lund "Physical Principles of Food Preservation". Rutledge, 2003.
- 2. VanGarde, S.J. and Woodburn. M "Food Preservation and Safety Principles and Practice". Surbhi Publications, 2001.
- 3. Sivasankar, B. "Food Processing & Preservation", Prentice Hall of India, 2002.
- 4. Khetarpaul, Neelam, "Food Processing and Preservation", Daya Publications, 2005.

COURSE OBJECTIVES:

- To provide the basic fundamental knowledge of different forms of Intellectual Property Rights in national and international level.
- To provide the significance of the Intellectual Property Rights about the patents, copyrights, industrial design, plant and geographical indications.
- This paper is to study significance of the amended patent act on pharma industry.

UNIT I INTRODUCTION- INTELLECTUAL PROPERTY RIGHTS

q

Introduction, Types of Intellectual Property Rights -patents, plant varieties protection, geographical indicators, copyright, trademark, trade secrets.

UNIT II PATENTS

9

Patents-Objective, Introduction, Requirement for patenting- Novelty, Inventive step (Non-obviousness) and industrial application (utility), Non-patentable inventions, rights of patent owner, assignment of patent rights, patent specification (provisional and complete), parts of complete specification, claims, procedure for obtaining patents, compulsory license.

UNIT III PLANT VARIETY-TRADITIONAL KNOWLEDGE –GEOGRAPHICAL INDICATIONS

9

Plant variety- Justification, criteria for protection of plant variety and protection in India. Traditional knowledge- Concept of traditional knowledge, protection of traditional knowledge under Intellectual Property frame works in national level and Traditional knowledge digital library (TKDL). Geographical Indications – Justification for protection, National and International position.

UNIT IV ENFORCEMENT AND PRACTICAL ASPECTS OF IPR

9

Introduction – civil remedies – injunction, damage, account of profit – criminal remedies – patent, trademark. Practical aspects – Introduction, benefits of licensing, licensing of basic types of IPR, licensing clauses of IPR. Case studies of patent infringement, compulsory licensing, simple patent license agreements.

UNIT V INTERNATIONAL BACKGROUND OF INTELLECTUAL PROPERTY 9

International Background of Intellectual Property- Paris Convention, Berne convention, World Trade Organization (WTO), World Intellectual Property Organization (WIPO), Trade Related Aspects of Intellectual Property Rights (TRIPS) and Patent Co-operation Treaty (PCT).

TOTAL:45 PERIODS

TEXT BOOKS:

- 1. N. Nagpal, M. Arora, M.R.D. Usman, S. Rahar, "Intellectual Property Rights" Edu creation Publishing, New Delhi, 2017.
- 2. The Patents Act, 1970 (Bare Act with Short Notes) (New Delhi: Universal Law Publishing Company Pvt. Ltd. 2012.
- 3. B.S. Rao, P.V. Appaji, "Intellectual Property Rights in Pharmaceutical Industry: Theory and Practice", 2015.

- 1. Patents for Chemicals, Pharmaceuticals, & Biotechnology-Fundamentals of Global Law, Practice and Strategy, Philip W. Grubb, Oxford University Press, 2004.
- Basic Principles of patent law Basics principles and acquisition of IPR. Ramakrishna T. CIPRA, NLSIU, Bangalore, 2005
- 3. S. Lakshmana Prabu, TNK. Suriyaprakash, "Intellectual Property Rights", 1st ed., In Tech open access, Croatia, 2017.

Course Outcome

The student will be able to

- C1 Understand and differentiate the categories of intellectual property rights.
- C2 Describe about patents and procedure for obtaining patents.
- C3 Distinguish plant variety, traditional knowledge and geographical indications under IPR.
- **C4** Provide the information about the different enforcements and practical aspects involved in protection of IPR.
- **C5** Provide different organizations role and responsibilities in the protection of IPR in the international level.
- C6 Understand the interrelationships between different Intellectual Property Rights on International Society

					co-	PO MAPP	ING					
				I	PR FOR P	HARMA IN	IDUSTRY	'				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C1	3	3		2					2	2		
C2		3	3				2	2				
C3	3	3					2	2				1
C4					2		3	3		2	2	
C5		3					3			2		1
C6	3	2				2	2					2

OTT351

BASICS OF TEXTILE FINISHING

LT PC 3 0 0 3

OBJECTIVE:

• To enable the students to understand the basics and different types of finishes required for textile materials and machines used for finishing.

UNIT I RESIN FINISHING

9

Importance of finishing and its classification. Resin finishing: Mechanism of creasing, Types of Resins .Anti crease, wash and wear, durable press resin finishing. Study about eco friendly method of anti crease finishing.

UNIT II FLAME PROOF & WATERPROOF

9

Concept of Flame proof & flame retardancy. Flame retardant finishes for cotton, Concept of waterproof and water repellent Finishes, Durable & Semi durable and Temporary finishes, Concept of Antimicrobial finish.

UNIT III SOIL RELEASE AND ANTISTATIC FINISHES

9

Soil Release Finishing: Mechanism of soil retention & soil release. Anti pilling Finishing: chemical and mechanical methods to produce anti pilling. Concept of UV Protection finishes- Concept of antistatic finishes.

UNIT IV MECHANICAL FINISHES

Õ

Mechanical finishing of textile materials - calendaring, compacting, Sanforising, Peach finishing. Object of Heat setting. Various methods of heat setting and mechanism of heat setting.

UNIT V STIFFENING AND SOFTENING

Concept of stiffening and softening of textile materials. Mechanism in the weight reduction of PET .Concept of Micro encapsulation techniques in finishing process, Nano finish, Plasma Treatment and Bio finishing.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to Understand the

- CO: 1 Basics of Resin Finishing Process.
- CO:2 Concept of Flame proof & flame retardancy, waterproof and water repellent, Antimicrobial finishes.
- CO: 3 Concept of Soil Release, Anti Pilling, UV Protection and Antistatic finishes.
- CO: 4 Concept of Mechanical finishing.
- CO: 5 Basics of Micro encapsulation techniques, Nano finish, Plasma Treatment.

TEXT BOOKS:

- 1. V.A.Shennai, "Technology of Finishing", Vol X, Sevak Publications, Mumbai
- 2. Perkins, W.S., "Textile colouration and finishing", Carolina Academic Press., U.K, ISBN: 0890898855.2004.

REFERENCES:

- 1. Microencapsulation in finishing, Review of progress of Colouration, SDC, 2001 62
- 2. Chakraborty, J.N, Fundamentals and Practices in colouration of Textiles, Woodhead Publishing India, 2009, ISBN-13:978-81-908001-4-3
- 3. W. D. Schindler and P. J. Hauser "Chemical finishing of textiles", Woodhead Publishing Cambridge England, 2004.

OTT352 INDUSTRIAL ENGINEERING FOR GARMENT INDUSTRY

LTPC

OBJECTIVES:

 To enable the students to learn about basics of industrial engineering and different tools of industrial engineering and its application in apparel industry

UNIT I INTRODUCTION

9

Scope of industrial engineering in apparel Industry, role of industrial engineers.

Productivity: Definition - Productivity, Productivity measures .Reduction of work content due to the product and process, Reduction of ineffective time due to the management, due to the worker. Causes for low productivity in apparel industry and measures for improvement.

UNIT II WORK STUDY

9

Definition, Purpose, Basic procedure and techniques of work-study.

Work environment – Lighting, Ventilation, Climatic condition on productivity. Temperature control, humidity control, noise control measures. Safety and ergonomics on work station and work environment

Material Handling – Objectives, Classification and characteristics of material handling equipments, Specialized material handling equipments.

UNIT III METHOD STUDY

9

Definition, Objectives, Procedure, Process charts and symbols. Various charts - Charts indicating process sequence: Outline process chart, flow process chart (man type, material type

and equipment type); Charts using time scale – multiple activity chart. Diagrams indicating movement – flow diagram, string diagram, cycle graph, chrono cycle graph, travel chart **MOTION STUDY:** Principle of motion economy, Two handed process chart, micro motion analysis – therbligs, SIMO chart.

UNIT IV WORK MEASUREMENT

9

Definition, purpose, procedure, equipments, techniques. Time study - Definition, basics of time study- equipments. Time study forms, Stop watch procedure. Predetermined motion time standards (PMTS). Time Study rating, calculation of standard time, Performance rating – relaxation and other allowances. Calculation of SAM for different garments, GSD.

UNIT V WORK STUDY APPLICATION

9

Application of work study techniques in cutting, stitching and packing in garment industry. Workaids in sewing, Pitch diagram, Line balancing, Capacity planning, scientific method of training.

TOTAL: 45 PERIODS

OUTCOMES:

Upon the completion of the course the student shall be able to understand

CO1: Fundamental concepts of industrial Engineering and productivity

CO2: Method study

CO3: Motion analysis

CO4: Work measurement and SAM

CO5: Ergonomics and its application to garment industry

TEXTBOOKS:

- George Kanwaty, "Introduction to Work Study ", ILO, Geneva, 1996, ISBN: 9221071081 IISBN-13: 9789221071082
- 2. Enrick N. L., "Time study manual for Textile industry", Wiley Eastern (P) Ltd., 1989, ISBN: 0898740444 | ISBN-13: 9780898740448
- 3. Khanna O. P., and Sarup A., "Industrial Engineering and Management", Dhanpat Rai Publications, New Delhi, 2010, ISBN: 818992835X / ISBN: 978-8189928353

REFERENCES

- 1. Norberd Lloyd Enrick., "Industrial Engineering Manual for Textile Industry", Wiley Eastern (P) Ltd., New Delhi, 1988, ISBN: 0882756311 | ISBN-13: 9780882756318
- 2. Chuter A. J., "Introduction to Clothing Production Management", Wiley-Black well Science, U.S. A., 1995, ISBN: 0632039396 | ISBN-13: 9780632039395
- 3. David M. Levine., Timothy C. Krehbiel., and Mark L. Berenson., "Business Statistics: A First Course", 7th Edition, Pearson Education Asia, New Delhi, 2015, ISBN: 032197901X | ISBN-13: 9780321979018
- 4. Chase., Aquilano., and Jacobs., "Production and Operations Management", Tata McGraw-Hill, New Delhi, 8th Edition, 1999, ISBN: 0256225567 | ISBN-13: 9780256225563
- 5. GavrielSalvendy., "Industrial Engineering Technology and operations management", WileyInterscience Publications, USA, 2001, ISBN: 0471330574 | ISBN-13: 9780471330578
- 6. GordanaColovic., "Ergonomics in the garment industry", Wood publishing India Pvt. Ltd., India, 2014, ISBN: 0857098225 | ISBN-13: 9780857098221

- 1. Johnson Maurice "Introduction of Work Study", International Labour Organization, Geneva, 2005.
- V.Ramesh Babu "Industrial Engineering in Apparel Production" Woodhead publishing India PVT ltd, 2012
- 3. Kiell B.Zandin, "Mayanard's "Industrial Engineering Hand Book", Fifth edition, Mc Graw Hill, NewYork, 2001.
- 4. Sharma (S K); Sharma (Savita "Work Study And Ergonomics "S. K. Kataria & Sons (publishers) ISBN: 818845834, 2010
- 5. Khanna.O.P., "Industrial Engineering and Management", Danpat Rai and Sons, 1987.
- 6. Ralph M. Barnes, "Motion and Time Study Design and Measurement of Work", 7th

- Edition, John Wiley and Sons, New York, 1980.
- 7. Khan.M.I., "Industrial Ergonomics", PHI LTD. Eastern Economy Edition, 2010.
- 8. Kantilla IIa, "Apparel Industry In India", Prentice Hall, 1990.
- 9. Rajesh Bheda, "Managing Productivity in Apparel Industry "CBS Publishers & Distributors, 2008

Course Articulation Matrix:

CourseO		Program Outcome														
utcomes	Statement	PO 1	PO2	PO 3	PO 4	PO5	PO 6	PO 7	PO 8	PO 9	P O 10	P O 11	P O 12	PS O 1	PS O 2	PSO 3
CO1	Fundamental concepts of industrial Engineering and productivity	2	2	3	3	2	1	1	2	2	1	2	2	1	1	-
CO2	Method study	1	2	3	3	2	1	1	2	2	1	2	2	1	1	-
CO3	Motion analysis	1	2	3	3	2	1	1	2	2	1	2	2	1	1	-
CO4	Work measuremen t and SAM	1	2	3	3	2	1	1	2	2	1	3	2	1	1	-
CO5	Ergonomics and its application to garment industry	1	2	3	3	2	1	2	2	2	1	3	2	1	1	-
Overall CO		1.2	2	3	3	2	1	1.2	2	2	1	2.4	2	1	1	-

^{1, 2} and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively

OTT353

BASICS OF TEXTILE MANUFACTURE

LTPC 3003

OBJECTIVES:

To enable the students to learn about the basics of fibre forming, yarn production, fabric formation, coloration of fabrics and garment manufacturing

UNIT I NATURAL FIBRES

9

Introduction: Definition of staple fibre, filament; Classification of natural and man-made fibres, essential and desirable properties of fibres. Production and cultivation of Natural Fibers: Cultivation of cotton, production of silk (sericulture), wool and jute – physical and chemical structure of these fibres..

UNIT II REGENERATED AND SYNTHETIC FIBRES

9

Production sequence of regenerated and modified cellulosic fibres: viscose rayon, Acetate Rayon, high wet modulus and high tenacity fibres; synthetic fibres – chemical structure, fibre forming polymers, production principles.

UNIT III BASICS OF SPINNING

9

Spinning – principle of yarn formation, sequence of machines for yarn production with short staple fibres and blends, principles of opening and cleaning machines; yarn numbering - calculations

UNIT IV BASICS OF WEAVING

9

Woven fabric – warp, weft, weaving, path of warp; looms – classification, handloom and its parts, powerloom, automatic looms, shuttleless looms, special type of looms; preparatory machines for weaving process and their objectives; basic weaving mechanism - primary, secondary and auxiliary mechanisms,

UNIT V BASICS OF KNITTING AND NONWOVEN

q

Knitting – classification, principle, types of fabrics; nonwoven process –classification, principle, types of fabrics.

TOTAL: 45 PERIODS

OUTCOMES:

On completion of this course, the students shall have the basic knowledge on

CO1: Classification of fibres and production of natural fibres

CO2: Regenerated and synthetic fibres

CO3: Yarn spinning

CO4: Weaving

CO5: Knitting and nonwoven

TEXTBOOKS

- 1. Mishra S. P., "A Text Book of Fibre Science and Technology", New Age Publishers, 2000, ISBN: 8122412505
- 2. Marks R., and Robinson. T.C., "Principles of Weaving", The Textile Institute, Manchester, 1989, ISBN: 0 900739 258.
- 3. Spencer D.J., "Knitting Technology", III Ed., Textile Institute, Manchester, 2001, ISBN: 185573 333 1.

- 1. Hornberer M., Eberle H., Kilgus R., Ring W. and Hermeling H., "Clothing Technology: From Fibre to Fabric", Europa LehrmittelVerlag, 2008, ISBN: 3808562250 / ISBN: 978-3808562253
- 2. Wynne A., "Motivate Series-Textiles", Maxmillan Publications, London, 1997.
- Carr H. and Latham B., "The Technology of Clothing Manufacture" Backwell Science, U.K., 1994, ISBN: 0632037482 / ISBN:13: 9780632037483. Klein W., "The Rieter Manual of Spinning, Vol.1", Rieter Machine Works Ltd., Winterthur, 2014, ISBN 103-9523173-1-4 / ISBN 13 978-3-9523173-1-0.
- 4. Klein W., "The Rieter Manual of Spinning, Vol.2", Rieter Machine Works Ltd., Winterthur, 2014, ISBN 103-9523173-2-2 / ISBN 13978-3-9523173-2-7.
- 5. Klein W., "The Rieter Manual of Spinning, Vol.1-3", Rieter Machine Works Ltd., Winterthur, 2014, ISBN 10 3-9523173-3-0 / ISBN 13 978-3-9523173-3-4.
- 6. Talukdar. M.K., Sriramulu. P.K., and Ajgaonkar. D.B., "Weaving: Machines, Mechanisms, Management", Mahajan Publishers, Ahmedabad, 1998, ISBN: 81-85401-16-0.
- 7. Morton W. E., and Hearle J. W. S., "Physical Properties of Textile Fibres", The Textile Institute, Washington D.C., 2008, ISBN 978-1-84569-220-95
- 8. Gohl E. P. G., "Textile Science", CBS Publishers and distributors, 1987, ISBN 0582685958

Course Articulation Matrix:

Cours	Statement	Pro	gran	n Oı	ıtco	me										
e Outco mes		P 01	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	P S O 1	P S O 2	PS O3
CO1	Classificatio n of fibres and production of natural fibres	-	-	-	-	-	-	-	2	1	-	1	1	-	1	-
CO2	Regenerate d and synthetic fibres	-	-	-	-	•	-	-	2	1	-	1	1	-	1	-
CO	Yarn spinning	-	-	-	-	-	-	-	2	1	-	1	1	-	1	-
CO ₄	Weaving	-	-	-	-	-	-	-	2	1	-	1	1	-	1	-
COS	Knitting and nonwoven	-	-	-	-	-	-	-	2	1	-	1	1	-	1	-
Overall	CO	-	-	-	-	-	-	-	2	1	-	1	1	-	1	-

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively

OPE351 INTRODUCTION TO PETROLEUM REFINING AND PETROCHEMICALS

LTPC 3 0 0 3

OBJECTIVE:

The course is aimed to

Gain knowledge about petroleum refining process and production of petrochemical products.

UNIT I ORIGIN, FORMATION AND REFINING OF CRUDE OIL

Origin, Formation and Evaluation of Crude Oil. Testing of Petroleum Products. Refining of Petroleum - Atmospheric and Vacuum Distillation.

UNIT II CRACKING

9

Cracking, Thermal Cracking, Vis-breaking, Catalytic Cracking (FCC), Hydro Cracking, Coking and Air Blowing of Bitumen

UNIT III REFORMING AND HYDROTREATING

9

Catalytic Reforming of Petroleum Feed Stocks. Lube oil processing- Solvent Treatment Processes, Dewaxing, Clay Treatment and Hydrofining. Treatment Techniques: Removal of Sulphur Compounds in all Petroleum Fractions to improve performance.

UNIT IV INTRODUCTION TO PETROCHEMICALS

9

Petrochemicals - Cracking of Naphtha and Feed stock gas for the production of Ethylene, Propylene, Isobutylene and Butadiene. Production of Acetylene from Methane, and Extraction of Aromatics.

UNIT V PRODUCTION OF PETROCHEMICALS

9

Production of Petrochemicals like Dimethyl Terephathalate(DMT), Ethylene Glycol, Synthetic glycerine, Linear Alkyl Benzene (LAB), Acrylonitrile, Methyl Methacrylate (MMA), Vinyl Acetate Monomer, Phthalic Anhydride, Maleic Anhydride, Phenol, Acetone, Methanol, Formaldehyde, Acetaldehyde, Pentaerythritol and production of Carbon Black.

TOTAL: 45 PERIODS

OUTCOMES:

On the completion of the course students are expected to

- **CO1:** Understand the classification, composition and testing methods of crude petroleum and its products. Learn the mechanism of refining process.
- **CO2:** Understand the insights of primary treatment processes to produce the precursors.
- **CO3:** Study the secondary treatment processes cracking, vis-breaking and coking to produce more petroleum products.
- **CO4:** Appreciate the need of treatment techniques for the removal of sulphur and other impurities from petroleum products.
- **CO5:** Understand the societal impact of petrochemicals and learn their manufacturing processes.
- **CO6:** Learn the importance of optimization of process parameters for the high yield of petroleum products.

TEXT BOOKS

1. Nelson, W. L., "Petroleum Refinery Engineering", 4th Edition., McGraw Hill, New York, 1985. 2. Wiseman. P., "Petrochemicals", UMIST Series in Science and Technology, John Wiley & Sons, 1986.

REFERENCES

- 1. Bhaskara Rao, B. K., "Modern Petroleum Refining Processes", 2nd Edition, Oxford and IBH Publishing Company, New Delhi, 1990.
- 2. Bhaskara Rao, B. K. "A Text on Petrochemicals", 1st Edition, Khanna Publishers

CPE334

ENERGY CONSERVATION AND MANAGEMENT

L T P C 3 0 0 3

OBJECTIVES:

At the end of the course, the student is expected to

- understand and analyse the energy data of industries
- carryout energy accounting and balancing
- conduct energy audit and suggest methodologies for energy savings and
- utilise the available resources in optimal ways

UNIT I INTRODUCTION

9

Energy - Power - Past & Present scenario of World; National Energy consumption Data - Environmental aspects associated with energy utilization - Energy Auditing: Need, Types, Methodology and Barriers. Role of Energy Managers. Instruments for energy auditing.

UNIT II ELECTRICAL SYSTEMS

9

Components of EB billing – HT and LT supply, Transformers, Cable Sizing, Concept of Capacitors, Power Factor Improvement, Harmonics, Electric Motors - Motor Efficiency Computation, Energy Efficient Motors, Illumination – Lux, Lumens, Types of lighting, Efficacy, LED Lighting and scope of Encon in Illumination.

UNIT III THERMAL SYSTEMS

9

Stoichiometry, Boilers, Furnaces and Thermic Fluid Heaters – Efficiency computation and encon measures. Steam: Distribution &U sage: Steam Traps, Condensate Recovery, Flash Steam Utilization, Insulators & Refractories

UNIT IV ENERGY CONSERVATION IN MAJOR UTILITIES

g

Pumps, Fans, Blowers, Compressed Air Systems, Refrigeration and Air Conditioning Systems –Cooling Towers – D.G. sets

UNIT V ECONOMICS

9

Energy Economics – Discount Rate, Payback Period, Internal Rate of Return, Net Present Value, Life Cycle Costing –ESCO concept

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of this course, the students can able to analyze the energy data of industries.

- CO1: Remember the knowledge for Basic combustion and furnace design and selection of thermal and mechanical energy equipment.
- CO2: Study the Importance of Stoichiometry relations, Theoretical air required for complete combustion.
- CO3: Skills on combustion thermodynamics and kinetics.
- CO4: Apply calculation and design tube still heaters.
- CO5: Studied different heat treatment furnace.
- CO6: Practical and theoretical knowledge burner design.

TEXT BOOKS:

1. Energy Manager Training Manual (4 Volumes) available at www.energymanagertraining.com. a website administered by Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power, Government of India, 2004.

REFERENCES:

- 1. Witte. L.C., P.S. Schmidt, D.R. Brown, "Industrial Energy Management and Utilisation" Hemisphere Publ, Washington, 1988.
- 2. Callaghn, P.W. "Design and Management for Energy Conservation", Pergamon Press, Oxford, 1981.
- 3. Dryden. I.G.C., "The Efficient Use of Energy" Butterworths, London, 1982
- 4. Turner. W.C., "Energy Management Hand book", Wiley, New York, 1982.
- 5. Murphy, W.R. and G. Mc KAY, "Energy Management", Butterworths, London 1987

OPT351

BASICS OF PLASTICS PROCESSING

LTPC 3003

COURSE OBJECTIVES

- Understand the fundamentals of plastics processing, such as the relationships between material structural properties and required processing parameters, and so on
- To gain practical knowledge on the polymer selection and its processing
- Understanding the major plastic material processing techniques (Extrusion, Injection molding, Compression and Transfer molding, Blow molding, Thermoforming and casting)
- To understand suitable additives for plastics compounding
- To Propose troubleshooting mechanisms for defects found in plastics products manufactured by various processing techniques

UNIT I INTRODUCTION TO PLASTICS PROCESSING

9

Introduction to plastic processing – Principles of plastic processing: processing of plastics vs. metals and ceramics. Factors influencing the efficiency of plastics processing: molecular weight, viscosity and rheology. Difference in approach for thermoplastic and thermoset processing. Additives for plastics compounding and processing: antioxidants, light stabilizers, UV stabilizers, lubricants, impact modifiers, flame retardants, antistatic agents, stabilizers and plasticizers. Compounding: plastic compounding techniques, plasticization, pelletization.

UNIT II EXTRUSION 9

Extrusion – Principles of extrusion. Features of extruder: barrel, screw, types of screws, drive mechanism, specifications, heating & cooling systems, types of extruders. Flow mechanism: process variables, die entry effects and exit instabilities. Die swell, Defects: melt fracture, shark skin, bambooing. Factors determining efficiency of an extruder. Extrusion of films: blown and cast films. Tube/pipe extrusion. Extrusion coating: wire & cable. Twin screw extruder and its applications. Applications of extrusion and new developments.

UNIT III INJECTION MOLDING

9

Injection molding – Principles and processing outline, machinery, accessories and functions, specifications, process variables, mould cycle. Types of clamping: hydraulic and toggle mechanisms. Start-up and shut down procedures-Cylinder nozzles- Press capacity projected area -Shot weight Basic theoretical concepts and their relationship to processing - Interaction of moulding process aspect effects in quoted variables. Basic mould types. Reciprocating vs. plunger type injection moulding. Thermoplastic vs. thermosetting injection moulding. Injection moulding vs. other plastic processing techniques. State-of-the art injection moulding techniques - Introduction to trouble shooting

UNIT IV COMPRESSION AND TRANSFER MOLDING

9

Compression moulding – Basic principles of compression and transfer moulding-Meaning of terms-Bulk factor and flow properties, moulding materials, process variables and process cycle, Inter relation between flow properties-Curing time-Mould temperature and Pressure requirements. Preforms and preheating- Techniques of preheating. Machines used-Types of compression mould- positive, semi-positive and flash. Common moulding faults and their correction- Finishing of mouldings. Transfer moulding: working principle, equipment, Press capacity-Integral moulds and auxiliary ram moulds, moulding cycle, moulding tolerances, pot transfer, plunger transfer and screw transfer moulding techniques, advantages over compression moulding

UNIT V BLOW MOLDING, THERMOFORMING AND CASTING

9

Blow moulding: principles and terminologies. Injection blow moulding. Extrusion blow moulding. Design guidelines for optimum product performance and appearance. Thermoforming: principle, vacuum forming, pressure forming mechanical forming. Casting: working principle, types and applications.

TOTAL HOURS: 45

COURSE OUTCOMES

 Ability to find out the correlation between various processing techniques with product properties.

- Understand the major plastics processing techniques used in moulding (injection, blow, compression, and transfer), extrusion, thermoforming, and casting.
- Acquire knowledge on additives for plastic compounding and methods employed for the same
- Familiarize with the machinery and ancillary equipment associated with various plastic processing techniques.
- Select an appropriate processing technique for the production of a plastic product

REFERENCES

- 1. S. S. Schwart, S. H. Goodman, Plastics Materials and Processes, Van Nostrad Reinhold Company Inc. (1982).
- 2. F. Hensen (Ed.), Plastic Extrusion Technology, Hanser Gardner (1997).
- 3. W. S. Allen and P. N. Baker, Hand Book of Plastic Technology, Volume-1, Plastic Processing Operations [Injection, Compression, Transfer, Blow Molding], CBS Publishers and Distributors (2004).
- 4. M. Chanda, S. K. Roy, Plastic Technology handbook, 4th Edn., CRC Press (2007).
- 5. I. I. Rubin, Injection Molding Theory & Practice, Society of Plastic Engineers, Wiley (1973).
- 6. D.V. Rosato, M. G. Rosato, Injection Molding Hand Book, Springer (2012).
- 7. M. L. Berins (Ed.), SPI Plastic Engineering Hand Book of Society of Plastic Industry Inc., Springer (2012).
- 8. B. Strong, Plastics: Material & Processing, A, Pearson Prentice hall (2005).
- 9. D.V Rosato, Blow Molding Hand Book, Carl HanserVerlag GmbH & Co (2003).

OEC351 SIGNALS AND SYSTEMS

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To understand the basic properties of signal & systems
- To know the methods of characterization of LTI systems in time domain
- To analyze continuous time signals and system in the Fourier and Laplace domain
- To analyze discrete time signals and system in the Fourier and Z transform domain

UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS

C

Standard signals- Step, Ramp, Pulse, Impulse, Real and complex exponentials and Sinusoids_Classification of signals – Continuous time (CT) and Discrete Time (DT) signals, Periodic & Aperiodic signals, Deterministic & Random signals, Energy & Power signals - Classification of systems- CT systems and DT systems- – Linear & Nonlinear, Time-variant& Time-invariant, Causal & Non-causal, Stable & Unstable.

UNIT II ANALYSIS OF CONTINUOUS TIME SIGNALS

9

Fourier series for periodic signals - Fourier Transform – properties- Laplace Transforms and Properties

UNIT III LINEAR TIME INVARIANT CONTINUOUS TIME SYSTEMS

9

Impulse response - convolution integrals- Differential Equation- Fourier and Laplace transforms in Analysis of CT systems - Systems connected in series / parallel.

UNIT IV ANALYSIS OF DISCRETE TIME SIGNALS

9

Baseband signal Sampling–Fourier Transform of discrete time signals (DTFT)– Properties of DTFT - Z Transform & Properties

UNIT V LINEAR TIME INVARIANT-DISCRETE TIME SYSTEMS

Q

Impulse response—Difference equations-Convolution sum- Discrete Fourier Transform and Z Transform Analysis of Recursive & Non-Recursive systems-DT systems connected in series and parallel.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of the course, the student will be able to:

CO1:determine if a given system is linear/causal/stable

CO2: determine the frequency components present in a deterministic signal

CO3:characterize continuous LTI systems in the time domain and frequency domain

CO4:characterize discrete LTI systems in the time domain and frequency domain

CO5:compute the output of an LTI system in the time and frequency domains

TEXT BOOKS:

- 1. Oppenheim, Willsky and Hamid, "Signals and Systems", 2nd Edition, Pearson Education, New Delhi, 2015. (Units I V)
- 2. Simon Haykin, Barry Van Veen, "Signals and Systems", 2nd Edition, Wiley, 2002

- 1. B. P. Lathi, "Principles of Linear Systems and Signals", 2nd Edition, Oxford, 2009.
- 2. M. J. Roberts, "Signals and Systems Analysis using Transform methods and MATLAB", McGraw- Hill Education, 2018.
- 3. John Alan Stuller, "An Introduction to Signals and Systems", Thomson, 2007.

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3	-	3	-	3	2	-	-	-	-		3	-	-	1
2	3	-	3	-	-	2	-	-	-	-		3	-	3	-
3	3	3	-	-	3	2	-	-	-	-		3	2	-	-
4	3	3	-	-	3	2	-	-	-	-		3	-	3	1
5	3	3	-	3	3	2	-	-	-	-		3	-	3	1
CO	3	3	3	3	3	2	-	-	-	-	-	3	2	3	1

COURSE OBJECTIVES:

- To give a comprehensive exposure to all types of devices and circuits constructed with discrete components. This helps to develop a strong basis for building linear and digital integrated circuits
- To analyze the frequency response of small signal amplifiers
- To design and analyze single stage and multistage amplifier circuits
- To study about feedback amplifiers and oscillators principles
- To understand the analysis and design of multi vibrators

UNIT I SEMICONDUCTOR DEVICES

9

PN junction diode, Zener diode, BJT, MOSFET, UJT –structure, operation and V-I characteristics, Rectifiers – Half Wave and Full Wave Rectifier, Zener as regulator

UNIT II AMPLIFIERS

9

Load line, operating point, biasing methods for BJT and MOSFET, BJT small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response – Analysis of CS and Source follower – Gain and frequency response- High frequency analysis.

UNIT III MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER

a

Cascode amplifier, Differential amplifier – Common mode and Difference mode analysis – Tuned amplifiers – Gain and frequency response – Neutralization methods.

UNIT IV FEEDBACK AMPLIFIERS AND OSCILLATORS

q

Advantages of negative feedback – Analysis of Voltage / Current, Series, Shunt feedback Amplifiers – positive feedback–Condition for oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators.

UNIT V POWER AMPLIFIERS AND DC/DC CONVERTERS

9

Power amplifiers- class A-Class B-Class AB-Class C-Temperature Effect- Class AB Power amplifier using MOSFET –DC/DC convertors – Buck, Boost, Buck-Boost analysis and design.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of the course the students will be able to

CO1: Explain the structure and working operation of basic electronic devices.

CO2: Design and analyze amplifiers.

CO3: Analyze frequency response of BJT and MOSFET amplifiers

CO4: Design and analyze feedback amplifiers and oscillator principles.

CO5: Design and analyze power amplifiers and supply circuits

TEXT BOOKS:

- 1. David A. Bell, "Electronic Devices and Circuits", Oxford Higher Education press, 5 th Edition, 2010
- 2. Robert L. Boylestad and Louis Nasheresky, "Electronic Devices and Circuit Theory", 10th Edition, Pearson Education / PHI, 2008.
- 3. Adel .S. Sedra, Kenneth C. Smith, "Micro Electronic Circuits", Oxford University Press, 7 th Edition, 2014.

- 1. Donald.A. Neamen, "Electronic Circuit Analysis and Design", Tata McGraw Hill, 3 rd Edition, 2010.
- 2. D.Schilling and C.Belove, "Electronic Circuits", McGraw Hill, 3 rd Edition, 1989
- 3. Muhammad H.Rashid, "Power Electronics", Pearson Education / PHI, 2004.

C	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3	3	3	3	2	1	-	-	-	-		1	2	1	1
2	3	2	2	3	2	2	-	-	-	-	-	1	2	1	1
3	3	3	3	2	1	2	-	-	-	-	-	1	2	1	1
4	3	3	2	3	2	2	-	-	-	-	-	1	2	1	1
5	3	2	3	2	2	1	-	-	-	-	-	1	2	1	1
С	3	3	3	3	2	2	-	-	-	-	-	1	2	1	1

CBM348 FOUNDATION SKILLS IN INTEGRATED PRODUCT DEVELOPMENT

LTPC 3 0 0 3

OBJECTIVES:

- To understand the global trends and development methodologies of various types of products and services
- To conceptualize, prototype and develop product management plan for a new product based on the type of the new product and development methodology integrating the hardware, software, controls, electronics and mechanical systems
- To understand requirement engineering and know how to collect, analyze and arrive at requirements for new product development and convert them in to design specification
- To understand system modeling for system, sub-system and their interfaces and arrive at the optimum system specification and characteristics
- To develop documentation, test specifications and coordinate with various teams to validate and sustain up to the EoL (End of Life) support activities for engineering customer

UNIT I BASICS OF PRODUCT DEVELOPMENT

9

Global Trends Analysis and Product decision - Social Trends - Technical Trends - Economical Trends - Environmental Trends - Political/Policy Trends - Introduction to Product Development Methodologies and Management - Overview of Products and Services - Types of Product Development - Overview of Product Development methodologies - Product Life Cycle - Product Development Planning and Management.

UNIT II REQUIREMENTS AND SYSTEM DESIGN

9

Requirement Engineering - Types of Requirements - Requirement Engineering - traceability Matrix and Analysis - Requirement Management - System Design & Modeling - Introduction to System Modeling - System Optimization - System Specification - Sub-System Design - Interface Design.

UNIT III DESIGN AND TESTING

9

Conceptualization - Industrial Design and User Interface Design - Introduction to Concept generation Techniques - Challenges in Integration of Engineering Disciplines - Concept Screening & Evaluation - Detailed Design - Component Design and Verification - Mechanical, Electronics and Software Subsystems - High Level Design/Low Level Design of S/W Program - Types of Prototypes, S/W Testing- Hardware Schematic, Component design, Layout and Hardware Testing - Prototyping - Introduction to Rapid Prototyping and Rapid Manufacturing - System Integration, Testing, Certification and Documentation

UNIT IV SUSTENANCE ENGINEERING AND END-OF-LIFE (EOL) SUPPORT

Introduction to Product verification processes and stages - Introduction to Product Validation processes and stages - Product Testing Standards and Certification - Product Documentation - Sustenance - Maintenance and Repair - Enhancements - Product EoL - Obsolescence Management - Configuration Management - EoL Disposal

UNIT V BUSINESS DYNAMICS - ENGINEERING SERVICES INDUSTRY

9

The Industry - Engineering Services Industry - Product Development in Industry versus Academia – The IPD Essentials - Introduction to Vertical Specific Product Development processes - Manufacturing/Purchase and Assembly of Systems - Integration of Mechanical, Embedded and Software Systems – Product Development Trade-offs - Intellectual Property Rights and Confidentiality – Security and Configuration Management.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to:

- Define, formulate, and analyze a problem
- Solve specific problems independently or as part of a team
- Gain knowledge of the Innovation & Product Development process in the Business Context
- Work independently as well as in teams
- Manage a project from start to finish

TEXT BOOKS:

- 1. Book specially prepared by NASSCOM as per the MoU.
- 2. Karl T Ulrich and Stephen D Eppinger, "Product Design and Development", Tata McGraw Hill, Fifth Edition, 2011.
- 3. John W Newstorm and Keith Davis, "Organizational Behavior", Tata McGraw Hill, Eleventh Edition, 2005.

REFERENCES:

- 1. Hiriyappa B, "Corporate Strategy Managing the Business", Author House, 2013.
- 2. Peter F Drucker, "People and Performance", Butterworth Heinemann [Elsevier], Oxford, 2004.
- 3. Vinod Kumar Garg and Venkita Krishnan N K, "Enterprise Resource Planning Concepts", Second Edition, Prentice Hall, 2003.
- 4. Mark S Sanders and Ernest J McCormick, "Human Factors in Engineering and Design", McGraw Hill Education, Seventh Edition, 2013

CO's-PO's & PSO's MAPPING

CO's	PO's	;											PSO	's	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	3	1						1		1			
2	3	2	3	1						1		1			
3	3	2	3	1	1			1	1	1		1			
4	3	2	3	1	1			1	1	1		1			
5	3	2	3	1	1			1	1	1		1			
AVg.															

CBM333

ASSISTIVE TECHNOLOGY

LTPC 3003

OBJECTIVES:

The student should be made to:

- To know the hardware requirement various assistive devices
- To understand the prosthetic and orthotic devices
- To know the developments in assistive technology

UNIT I CARDIAC ASSIST DEVICES

9

Cardiac functions and parameters, principle of External counter pulsation techniques, intra aortic balloon pump, Auxillary ventricle and schematic for temporary bypass of left ventricle, prosthetic heart valves, cardiac pacemaker.

UNIT II HEMODIALYSERS

9

Physiology of kidney, Artificial kidney, Dialysis action, hemodialyser unit, membrane dialysis, portable dialyser monitoring and functional parameters.

UNIT III HEARING AIDS

9

Anatomy of ear, Common tests – audiograms, air conduction, bone conduction, masking techniques, SISI, Hearing aids – principles, drawbacks in the conventional unit, DSP based hearing aids.

UNIT IV PROSTHETIC AND ORTHODIC DEVICES

9

Hand and arm replacement – different types of models, externally powered limb prosthesis, feedback in orthotic system, functional electrical stimulation, sensory assist devices.

UNIT V RECENT TRENDS

9

Transcutaneous electrical nerve stimulator, bio-feedback, assistive devices in drug delivery

TOTAL: 45 PERIODS

OUTCOMES:

On successful completion of this course, the student will be able to

CO1: Interpret the various mechanical techniques that will help in assisting the heart functions.

CO2: Describe the underlying principles of hemodialyzer machine.

CO3: Indicate the methodologies to assess the hearing loss.

CO4: Evaluate the types of assistive devices for mobilization.

CO5: Explain about TENS and biofeedback system.

TEXT BOOKS

- 1. Joseph D. Bronzino, The Biomedical Engineering Handbook, Third Edition: Three Volume Set, CRC Press.2006
- 2. Marion. A. Hersh, Michael A. Johnson, Assistive Technology for visually impaired and blind, Springer Science & Business Media, 1st edition, 12-May-2010
- 3. Yadin David, Wolf W. von Maltzahn, Michael R. Neuman, Joseph.D, Bronzino, Clinical Engineering, CRC Press, 1st edition,2010.

REFERENCES

- 1. Kenneth J. Turner Advances in Home Care Technologies: Results of the match Project, Springer, 1stedition, 2011.
- 2. Gerr M. Craddock Assistive Technology-Shaping the future, IOS Press, 1st edition, 2003.
- 3. 3D Printing in Orthopaedic Surgery, Matthew Dipaola, Elsevier 2019 ISBN 978 -0-323-662116
- 4. Cardiac Assist Devices, Daniel Goldstein (Editor), Mehmet Oz (Editor), Wiley-Blackwell April 2000 ISBN: 978-0-879-93449-1

CO's	PO's												PSO	's	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	1	1	1	1										
2	3	1	1	1	1										
3	3	1	1	1	1										
4	3	1	1	1	1										
5	3	1	1	1	1										
AVg.															

OPERATIONS RESEARCH

L T P C 3 0 0 3

OBJECTIVES:

This course will help the students to

- determine the optimum solution for Linear programming problems.
- study the Transportation and assignment models and various techniques to solve them.
- acquire the knowledge of optimality, formulation and computation of integer programming problems.
- acquire the knowledge of optimality, formulation and computation of dynamic programming problems.
- determine the optimum solution for non-linear programming problems.

UNIT ILINEAR PROGRAMMING

9

Formulation of linear programming models – Graphical solution – Simplex method - Big M Method – Two phase simplex method - Duality - Dual simplex method.

UNIT IITRANSPORTATION AND ASSIGNMENT PROBLEMS

9

Matrix form of Transportation problems – Loops in T.P – Initial basic feasible solution – Transportation algorithm – Assignment problem – Unbalanced assignment problems .

UNIT III INTEGER PROGRAMMING

9

Introduction – All and mixed I.P.P – Gomory's method – Cutting plane algorithm – Branch and bound algorithm – Zero – one programming.

UNIT IV DYNAMIC PROGRAMMING PROBLEMS

Q

Recursive nature of computation – Forward and backward recursion – Resource Allocation model – Cargo – loading model – Work – force size model - Investment model – Solution of L.P.P by dynamic programming .

UNIT V NON - LINEAR PROGRAMMING PROBLEMS

9

Lagrange multipliers – Equality constraints – Inequality constraints – Kuhn – Tucker Conditions – Quadratic programming.

TOTAL:45 PERIODS

OUTCOMES:

At the end of the course, students will be able to

- Could develop a fundamental understanding of linear programming models, able to develop a linear programming model from problem description, apply the simplex method for solving linear programming problems.
- analyze the concept of developing, formulating, modeling and solving transportation and assignment problems.
- solve the integer programming problems using various methods.
- conceptualize the principle of optimality and sub-optimization, formulation and computational procedure of dynamic programming.
- determine the optimum solution for non linear programming problems.

TEXT BOOKS:

- 1. Kanti Swarup, P.K.Gupta and Man Mohan, "Operations Research", Sultan Chand & Sons, New Delhi, Fifth Edition, 1990.
- 2. Taha. H.A, "Operations Research An Introduction, Pearson Education, Ninth Edition, New Delhi, 2012.

REFERENCES:

- 1. J.K.Sharma, "Operations Research Theory and Applications " Mac Millan India Ltd, Second Edition, New Delhi, 2003.
- 2. Richard Bronson & Govindasami Naadimuthu , " Operations Research " (Schaum's Outlines TMH Edition) Tata McGraw Hill, Second Edition, New Delhi, 2004.
- 3. Pradeep Prabhakar Pai, "Operations Research and Practice", Oxford University Press, New Delhi, 2012.
- 4. J.P.Singh and N.P.Singh, "Operations Research, Ane Books Pvt.L.td, New Delhi, 2014.
- 5. F.S.Hillier and G.J. Lieberman, "Introduction to Operations Research", Tata McGraw Hill, Eighth Edition, New Delhi, 2005.

	РО	РО	РО	PO	РО	PO	PO	PO	РО	PO	PO	PO	PS	PS	PS
	01	02	03	04	05	06	07	08	09	10	11	12	01	02	O3
CO1	3	3	0	0	0	0	0	0	2	0	0	2	-	-	-
CO2	3	3	3	2	0	0	0	0	2	0	0	2	-	-	-
CO3	3	3	0	0	0	0	0	0	2	0	0	2	-	-	-
CO4	3	3	0	0	0	0	0	0	2	0	0	2	-	-	-
CO5	3	3	2	2	0	0	0	0	2	0	0	2	-	-	-
Avg	3	3	1	0.8	0	0	0	0	2	0	0	2	-	-	-

OMA353

ALGEBRA AND NUMBER THEORY

LT P C 3 0 0 3

OBJECTIVES:

- To introduce the basic notions of groups, rings, fields which will then be used to solve related problems.
- To examine the key questions in the Theory of Numbers.
- To give an integrated approach to number theory and abstract algebra, and provide a firm basis for further reading and study in the subject.

UNIT I GROUPS AND RINGS

۵

Groups: Definition - Properties - Homomorphism - Isomorphism - Cyclic groups - Cosets - Lagrange's theorem.

Rings: Definition - Sub rings - Integral domain - Field - Integer modulo n - Ring homomorphism.

UNIT II FINITE FIELDS AND POLYNOMIALS

9

Rings - Polynomial rings - Irreducible polynomials over finite fields - Factorization of polynomials over finite fields.

UNIT III DIVISIBILITY THEORY AND CANONICAL DECOMPOSITIONS

9

Division algorithm- Base-b representations – Number patterns – Prime and composite numbers – GCD – Euclidean algorithm – Fundamental theorem of arithmetic – LCM.

UNIT IV DIOPHANTINE EQUATIONS AND CONGRUENCES

9

Linear Diophantine equations – Congruence's – Linear Congruence's - Applications : Divisibility tests - Modular exponentiation - Chinese remainder theorem – 2x2 linear systems.

UNIT V CLASSICAL THEOREMS AND MULTIPLICATIVE FUNCTIONS

_

Wilson's theorem – Fermat's Little theorem – Euler's theorem – Euler's Phi functions – Tau and Sigma functions.

TOTAL: 45 PERIODS

OUTCOMES:

- Explain the fundamental concepts of advanced algebra and their role in modern mathematics and applied contexts.
- Demonstrate accurate and efficient use of advanced algebraic techniques.
- The students should be able to demonstrate their mastery by solving non-trivial problems related to the concepts, and by proving simple theorems about the, statements proven by the text

TEXT BOOKS:

- 1. Grimaldi, R.P. and Ramana, B.V., "Discrete and Combinatorial Mathematics", Pearson Education, 5th Edition, New Delhi, 2007.
- 2. Thomas Koshy, "Elementary Number Theory with Applications", Elsevier Publications, New Delhi, 2002.

REFERENCES:

- 1. San Ling and Chaoping Xing, "Coding Theory A first Course", Cambridge Publications, Cambridge, 2004.
- 2. Niven.I, Zuckerman.H.S., and Montgomery, H.L., "An Introduction to Theory of Numbers", John Wiley and Sons, Singapore, 2004.
- Lidl.R., and Pitz. G, "Applied Abstract Algebra", Springer Verlag, New Delhi, 2nd Edition, 2006.

1.

	РО	PO	PO	PO	РО	РО	РО	PO	PO	PO	PO	PO	PS	PS	PS
	01	02	03	04	05	06	07	08	09	10	11	12	01	02	O3
CO1	3	1	2	-	-	-	2	1	-	1	2	2	-	-	-
CO2	3	3	1	1	3	1	2	1	1	1	2	2	-	-	-
CO3	3	3	2	1	3	1	3	1	1	1	2	3	-	-	-
CO4	3	3	2	2	3	2	2	1	1	1	2	3	-	-	-
CO5	2	2	1	-	3	1	2	1	1	1	3	3	-	-	-
A	2.0	2.4	1.6	0.0	2.4	4	2.2	4	0.0	4	2.2	2.6			

OMA354 LINEAR ALGEBRA LTPC 3003

COURSE OBJECTIVES:

- To test the consistency and solve system of linear equations.
- To find the basis and dimension of vector space.
- To obtain the matrix of linear transformation and its eigenvalues and eigenvectors.
- To find orthonormal basis of inner product space and find least square approximation.
- To find eigenvalues of a matrix using numerical techniques and perform matrix decomposition.

MATRICES AND SYSTEM OF LINEAR EQUATIONS **UNIT I**

Matrices - Row echelon form - Rank - System of linear equations - Consistency - Gauss elimination method - Gauss Jordan method.

VECTOR SPACES UNIT II

Vector spaces over Real and Complex fields - Subspace - Linear space - Linear independence and dependence - Basis and dimension.

UNIT III LINEAR TRANSFORMATION

Linear transformation - Rank space and null space - Rank and nullity - Dimension theorem- Matrix representation of linear transformation - Eigenvalues and eigenvectors of linear transformation -Diagonalization.

UNIT IV INNER PRODUCT SPACES

Inner product and norms - Properties - Orthogonal, Orthonormal vectors - Gram Schmidt orthonormalization process - Least square approximation.

UNIT V EIGEN VALUE PROBLEMS AND MATRIX DECOMPOSITION

۵

Eigen value Problems : Power method, Jacobi rotation method - Singular value decomposition – QR decomposition.

TOTAL : 45 PERIODS

COURSE OUTCOMES:

After the completion of the course the student will be able to

- 1. Test the consistency and solve system of linear equations.
- 2. Find the basis and dimension of vector space.
- 3. Obtain the matrix of linear transformation and its eigenvalues and eigenvectors.
- 4. Find orthonormal basis of inner product space and find least square approximation.
- 5. Find eigenvalues of a matrix using numerical techniques and perform matrix decomposition.

TEXT BOOKS

- 1. Faires J.D. and Burden R., Numerical Methods, Brooks/Cole (Thomson Publications), New Delhi, 2002.
- 2. Friedberg A.H, Insel A.J. and Spence L, Linear Algebra, Pearson Education, 5th Edition,2019.

REFERENCES

- 1. Bernard Kolman, David R. Hill, Introductory Linear Algebra, Pearson Educations, New Delhi, 8th Edition, 2009.
- 2. Gerald C.F. and Wheatley P.O, Applied Numerical Analysis, Pearson Educations, New Delhi, 7th Edition, 2007.
- 3. Kumaresan S, Linear Algebra A geometric approach, Prentice Hall of India, New Delhi, Reprint, 2010.
- 4. Richard Branson, Matrix Operations, Schaum's outline series, 1989.
- 5. Strang G, Linear Algebra and its applications, Thomson (Brooks / Cole) New Delhi, 4th Edition. 2005.
- 6. Sundarapandian V, Numerical Linear Algebra, Prentice Hall of India, New Delhi, 2014.

	P O 01	P O 02	P O 03	P O 04	P O 05	P O 06	P O 07	P O 08	P O 09	P O 10	P O 11	P O 12	P S O 1	P S O 2	P S O 3
CO 1	3	3	3	3	2	2	2	1	1	1	1	3	-	-	-
CO 2	3	3	3	3	3	2	2	1	1	1	1	3	-	-	-
CO 3	3	3	3	3	3	2	2	1	1	1	1	3	-	-	-
CO 4	3	3	3	3	3	2	2	1	1	1	1	3	-	-	-
CO 5	3	3	3	3	3	2	2	1	1	1	1	3	-	-	-
Av a	3	3	3	3	2. 8	2	2	1	1	1	1	3	-	-	-

9

OBT352

BASICS OF MICROBIAL TECHNOLOGY

LTPC 3003

COURSE OBJECTIVE:

• Enable the Non-biological student's to understand about the basics of life science and their pro and cons for living organisms.

UNIT I BASICS OF MICROBES AND ITS TYPES

Q

Introduction to microbes, existence of microbes, inventions of great scientist and history, types of microorganisms – Bacteria, Virus, Fungi.

UNIT II MICROBIAL TECHNIQUES

9

Sterilization – types – physical and chemical sterilization, Decontamination, Preservation methods, fermentation, Cultivation and growth of microbes, Diagnostic methods.

UNIT III PATHOGENIC MICROBES

9

Infectious Disease – Awareness, Causative agent, Prevention and control - Cholera, Dengu, Malaria, Diarrhea, Tuberculosis, Typhoid, Covid, HIV.

UNIT IV BENEFICIAL MICROBES

9

Applications of microbes – Clinical microbiology, agricultural microbiology, Food Microbiology, Environmental Microbiology, Animal Microbiology, Marine Microbiology.

UNIT V PRODUCTS FROM MICROBES

9

Fermentedproducts – Fermented Beverages, Curd, Cheese, Mushroom, Agricultural products – Biopesticide, Biofertilizers, Vermi compost, Pharmaceutical products - Antibiotics, Vaccines

OTAL: 45 PERIODS

COURSE OUTCOME:

At the end of the course the students will be able to

- 1. Microbes and their types
- 2. Cultivation of microbes
- 3. Pathogens and control measures for safety
- 4. Microbes in different industry for economy.

TEXT BOOKS

- 1. Talaron K, Talaron A, Casita, Pelczar and Reid. Foundations in Microbiology, W.C. Brown Publishers, 1993.
- 2. Pelczar MJ, Chan ECS and Krein NR, Microbiology, Tata McGraw Hill Edition, New Delhi, India.
- 3. Prescott L.M., Harley J.P., Klein DA, Microbiology, 3rd Edition, Wm. C. Brown Publishers, 1996.

OBT353

BASICS OF BIOMOLECULES

LTPC 3 0 0 3

OBJECTIVES:

 The objective is to offer basic concepts of biochemistry to students with diverse background in life sciences including but not limited to the structure and function of various biomolecules and their metabolism.

UNIT I CARBOHYDRATES

9

Introduction to carbohydrate, classification, properties of monosaccharide, structural aspects of monosaccharides. Introduction to disaccharide (lactose, maltose, sucrose) and polysaccharide (Heparin, starch, and glycogen) biological function of carbohydrate.

UNIT II LIPID AND FATTY ACIDS

9

Introduction to lipid, occurrence, properties, classification of lipid. Importance of phospholipids, sphingolipid and glycerolipid. Biological function of lipid. Fatty acid, Introduction, Nomenclature and classification of fatty acid Essential and non essential fatty acids.

UNIT III AMINO ACIDS AND PROTEIN.

9

Introduction to amino acid, structure, classification of protein based on polarity. Introduction to protein, classification of protein based on solubility, shape, composition and Function. Peptide bond– Structure of peptide bond. Denauration – renaturation of protein, properties of protein. Introduction to lipoprotein, glycoprotein and nucleoprotein. Biological function of protein.

UNIT IV NUCLEIC ACIDS

9

Introduction to nucleic acid, Difference between nucleotide and nucleoside, composition of DNA & amp; RNA Structure of Nitrogen bases in DNA and RNA along with the nomenclature DNA double helix (Watson and crick) model, types of DNA, RNA.

UNIT V VITAMINS AND HORMONES

9

Different types of vitamins, their diverse biochemical functions and deficiency related diseases. Overview of hormones. Hormone mediated signaling. Mechanism of action of steroid hormones, epinephrine, glucagons and insulin.Role of vitamins and hormones in metabolism; Hormonal disorders; Therapeutic uses ofvitamins and hormones.

OUTCOMES:

☐ Students will learn about various kinds of biomolecules and their physiological role.

☐ Students will gain knowledge about various metabolic disorders and will help them to know the importance of various biomolecules in terms of disease correlation.

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Lehninger Principles of Biochemistry 6th Edition by David L. Nelson, Michael M. Cox W.H.Freeman and Company 2017
- 2. Satyanarayana, U. and U. Chakerapani, "Biochemistry" 3rd Rev. Edition, Books & Died (P) Ltd., 2006. 3. Rastogi, S.C. "Biochemistry" 2nd Edition, Tata McGraw-Hill, 2003.
- 4. Conn, E.E., etal., "Outlines of Biochemistry" 5th Edition, John Wiley & Dons, 1987.
- 5. Outlines of Biochemistry, 5th Edition: By E E Conn, P K Stumpf, G Bruening and R Y Doi.pp 693. John Wiley and Sons, New York. 1987.

REFERENCES

- 1. Berg, Jeremy M. et al. "Biochemsitry", 6th Edition, W.H. Freeman & Ed., 2006.
- 2. Murray, R.K., etal "Harper's Illustrated Biochemistry", 31st Edition, McGraw-Hill, 2018.
- 3. Voet, D. and Voet, J.G., "Biochemistry", 4th Edition, John Wiley & D. Sons Inc., 2010.

OBT354 FUNDAMENTALS OF CELL AND MOLECULAR BIOLOGY OBJECTIVES: To provide knowledge on the fundamentals of cell biology. To understand the signalling mechanisms. Understand basic principles of molecular biology at intracellular level to regulate growth, division and development. UNIT-I INTRODUCTION TO CELL 9 Cell, cell wall and Extracellular Matrix (ECM), composition, cellular dimensions, Evolution, Organisation, differentiation of prokaryotic and Eukaryotic cells, Virus, bacteria, cyanobacteria, mycoplasma and prions.

UNIT II CELL ORGANELLES

9

Molecular organisation, biogenesis and functin Mitochondria, endoplasmic reticulam, golgi apparatus, plastids, chloroplast, leucoplast, centrosome, lysosome, ribosome, peroxisome, Nucleus and nucleolus. Endo membrane system, concept of compartmentalisation.

UNIT III BIO-MEMBRANE TRANSPORT

9

Physiochemical properties of cell membranes. Molecular constitute of membranes, asymmetrical organisation of lipids and proteins. Solute transport across membrane's-fick's law, simple diffusion, passive-facilitated diffusion, active transport- primary and secondary, group translocation, transport ATPases, membrane transport in bacteria and animals. Transportmechanism- mobile carriers and pores mechanisms. Transport by vesicle formation, endocytosis, exocytosis, cell respiration.

UNIT IV CELL CYCLE

9

Cell cycle- Cell division by mitosis and meosis, Comparision of meosis and mitosis, regulation of cell cycle, cell lysis, Cytokinesis, Cell signaling, Cell communication, Cell adhesion and Cell junction, cell cycle checkpoints.

UNIT V CENTRAL DOGMA

9

Overview of Central dogma DNA replication: Meselson & Stahl experiment, bi—directional DNA replication, Okazaki fragments. Structure and function of mRNA, rRNA and tRNA. RNA synthesis: Initiation, elongation and termination of RNA synthesis Introduction to Genetic code- Steps in translation: Initiation, Elongation and termination of protein synthesis.

TOTAL: 45 PERIODS

OUTCOMES:

□ Understanding of cell at structural and functional level.□ Understand the central dogma of life and its significance.

☐ Comprehend the basic mechanisms of cell division.

TEXTBOOKS:

- 1. Cooper, G.M. and R.E. Hansman "The Cell: A Molecular Approach", 8th Edition, Oxford University Press, 2018
- 2. Friefelder, David. "Molecular Biology." Narosa Publications, 1999
- 3. Weaver, Robert F. "Molecular Biology" IInd Edition, Tata McGraw-Hill, 2003.

REFERENCES:

1. Lodish H, Berk A, MatsudairaP, Kaiser CA, Krieger M, Schot MP, Zipursky L, Darnell J.

Molecular Cell Biology, 6th Edition, 2007.

- 2. Becker, W.M. etal., "The World of the Cell", 9th Edition, Pearson Education, 2003.
- 3. Campbell, N.A., J.B. Recee and E.J. Simon "Essential Biology", VIIrd Edition, Pearson International, 2007.
- 4. Alberts, Bruce etal., "Essential Cell Biology", 4th Edition, W.W. Norton, 2013.

OPEN ELECTIVE IV

OCE354 BASICS OF INTEGRATED WATER RESOURCES MANAGEMENT L T P C 3 0 0 3

OBJECTIVES

- To introduce the interdisciplinary approach of water management.
- To develop knowledge base and capacity building on IWRM.

UNIT I OVERVIEW OF IWRM

9

Facts about water - Definition – Key challenges - Paradigm shift - Water management Principles - Social equity - Ecological sustainability – Economic efficiency - SDGs - World Water Forums.

UNIT II WATER USE SECTORS: IMPACTS AND SOLUTION

Water users: People, Agriculture, ecosystem and others - Impacts of the water use sectors on water resources - Securing water for people, food production, ecosystems and other uses - IWRM relevance in water resources management.

UNIT III WATER ECONOMICS

9

Economic characteristics of water good and services – Economic instruments – Private sector involvement in water resources management - PPP experiences through case studies.

UNIT IV RECENT TREANDS IN WATER MANAGEMENT

Q

River basin management - Ecosystem Regeneration - $5~\mathrm{Rs}$ - WASH - Sustainable livelihood - Water management in the context of climate change.

UNIT V IMPLEMENTATION OF IWRM

9

Barriers to implementing IWRM - Policy and legal framework - Bureaucratic reforms and inclusive development - Institutional Transformation - Capacity building - Case studies on conceptual framework of IWRM.

OUTCOMES

TOTAL: 45 PERIODS

- On completion of the course, the student will be able to apply appropriate management techniques towards managing the water resources.
- **CO1** Describe the context and principles of IWRM; Compare the conventional and integrated ways of water management.
- **CO2** Discuss on the different water uses; how it is impacted and ways to tackle these impacts.
- **CO3** Explain the economic aspects of water and choose the best economic option among the alternatives; illustrate the pros and cons of PPP through case studies.
- **CO4** Illustrate the recent trends in water management.
- **CO5** Understand the implementation hitches and the institutional frameworks.

TEXT BOOKS

1. Cech Thomas V., Principles of water resources: history, development, management and policy. John Wiley and Sons Inc., New York. 2003.

2. Mollinga P. *et al.* "Integrated Water Resources Management", Water in South Asia Volume I, Sage Publications, 2006.

REFERENCES

- 1. Technical Advisory Committee, Background Papers No: 1, 4 and 7, Stockholm, Sweden. 2002.
- 2. IWRM Guidelines at River Basin Level (UNESCO, 2008).
- 3. Tutorial on Basic Principles of Integrated Water Resources Management ,CAP-NET. http://www.pacificwater.org/userfiles/file/IWRM/Toolboxes/introduction%20to%20iwrm/Tutorial_text. pdf
- 4. Pramod R. Bhave, 2011, Water Resources Systems, Narosa Publishers.
- 5. The 17 Goals, United Nations, https://sdgs.un.org/goals.

OHS352

PROJECT REPORT WRITING

L T P C 3 0 0 3

COURSE OBJECTIVE

The Course will enable Learners to,

- Understand the essentials of project writing.
- Perceive the difference between general writing and technical writing
- Assimilate the fundamental features of report writing.
- Understand the essential differences that exist between general and technical writing.
- Learn the structure of a technical and project report.

UNITI 9

Writing Skills – Essential Grammar and Vocabulary – Passive Voice, Reported Speech, Concord, Signpost words, Cohesive Devices – Paragraph writing - Technical Writing vs. General Writing.

UNIT II 9

Project Report – Definition, Structure, Types of Reports, Purpose – Intended Audience – Plagiarism – Report Writing in STEM fields – Experiment – Statistical Analysis.

UNIT III 9

Structure of the Project Report: (Part 1) Framing a Title – Content – Acknowledgement – Funding Details -Abstract – Introduction – Aim of the Study – Background - Writing the research question - Need of the Study/Project Significance, Relevance – Determining the feasibility – Theoretical Framework.

UNIT IV 9

Structure of the Project Report: (Part 2) – Literature Review, Research Design, Methods of Data Collection - Tools and Procedures - Data Analysis - Interpretation - Findings –Limitations -Recommendations – Conclusion – Bibliography.

UNIT V

Proof reading a report – Avoiding Typographical Errors – Bibliography in required Format – Font – Spacing – Checking Tables and Illustrations – Presenting a Report Orally – Techniques.

TOTAL:45 PERIODS

OUTCOMES

By the end of the course, learners will be able to

- Write effective project reports.
- Use statistical tools with confidence.

- Explain the purpose and intension of the proposed project coherently and with clarity.
- Create writing texts to suit achieve the intended purpose.
- Master the art of writing winning proposals and projects.

CO-PO & PSO MAPPING

CO	РО												PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	1	1	1	3	2	2	3	3	3	3	-	-	-
2	2	2	2	1	1	1	2	1	2	3	2	3	-	-	-
3	2	2	3	3	2	3	2	2	2	3	2	3	-	-	-
4	3	3	3	3	3	3	3	3	3	3	3	3	-	•	-
5	3	3	3	3	3	3	3	3	3	3	3	3	-	-	-
ΑV	2.	2.2	2.4	2.	2	2.6	2.4	2.2	2.6	3	2.6	3	-	-	-
g.	4			2											

- 1-low, 2-medium, 3-high, '-"- no correlation
- **Note:** The average value of this course to be used for program articulation matrix.

REFERENCES

- 1. Gerson and Gerson Technical Communication: Process and Product, 7th Edition, Prentice Hall(2012)
- 2. Virendra K. Pamecha Guide to Project Reports, Project Appraisals and Project Finance (2012)
- 3. Daniel Riordan Technical Report Writing Today (1998)
 Darla-Jean Weatherford Technical Writing for Engineering Professionals (2016) Penwell Publishers.

OMA355

ADVANCED NUMERICAL METHODS

LT P C 3 0 0 3

UNIT I ALGEBRAIC EQUATIONS AND EIGENVALUE PROBLEM

9

System of nonlinear equations: Fixed point iteration method - Newton's method; System of linear equations: Thomas algorithm for tri diagonal system - SOR iteration methods; Eigen value problems: Given's method - Householder's method.

UNIT II INTERPOLATION

9

Central difference: Stirling and Bessel's interpolation formulae; Piecewise spline interpolation: Piecewise linear, piecewise quadratic and cubic spline; Least square approximation for continuous data (upto 3rd degree).

UNIT III NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS 9

Explicit Adams - Bashforth Techniques - Implicit Adams - Moulton Techniques, Predictor - Corrector Techniques - Finite difference methods for solving two - point linear boundary value problems - Orthogonal Collocation method.

UNIT IV FINITE DIFFERENCE METHODS FOR ELLIPTIC EQUATIONS

Laplace and Poisson's equations in a rectangular region : Five point finite difference schemes - Leibmann's iterative methods - Dirichlet's and Neumann conditions - Laplace equation in polar coordinates : Finite difference schemes .

UNIT V FINITE DIFFERENCE METHOD FOR TIME DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS

Parabolic equations: Explicit and implicit finite difference methods – Weighted average approximation - Dirichlet's and Neumann conditions – First order hyperbolic equations - Method of characteristics - Different explicit and implicit methods; Wave equation: Explicit scheme – Stability of above schemes.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Grewal, B.S., "Numerical Methods in Engineering & Science ", Khanna Publications, Delhi, 2013.
- 2. Gupta, S.K., "Numerical Methods for Engineers", (Third Edition), New Age Publishers, 2015.
- 3. Jain, M.K., Iyengar, S.R.K. and Jain, R.K., "Computational Methods for Partial Differential Equations", New Age Publishers, 1994.

REFERENCES:

- Saumyen Guha and Rajesh Srivastava, "Numerical methods for Engineering and Science", Oxford Higher Education, New Delhi, 2010.
- 2. Burden, R.L., and Faires, J.D., "Numerical Analysis Theory and Applications", 9 th Edition, Cengage Learning, New Delhi, 2016.
- 3. Gupta S.K., "Numerical Methods for Engineers",4th Edition, New Age Publishers, 2019.
- 4. Sastry, S.S., "Introductory Methods of Numerical Analysis", 5th Edition, PHI Learning, 2015.
- 5. Morton, K.W. and Mayers D.F., "Numerical solution of Partial Differential equations", Cambridge University press, Cambridge, 2002.

	PO	PO	РО	PO	PO	РО	PO	PO	PO	PO	PO	PO	PS	PS	PS
	01	02	03	04	05	06	07	08	09	10	11	12	01	02	О3
CO1	3	3	3	3	2	2	2	1	1	1	1	3	-	-	-
CO2	3	3	3	3	3	2	2	1	1	1	1	3	-	-	-
CO3	3	3	3	3	3	2	2	1	1	1	1	3	-	-	-
CO4	3	3	3	3	3	2	2	1	1	1	1	3	-	-	-
CO5	3	3	3	3	3	2	2	1	1	1	1	3	-	-	-
Ava	3	3	3	3	3	2	2	1	1	1	1	3	_	-	-

OMA356

RANDOM PROCESSES

LT P C 3 0 0 3

OBJECTIVES:

- To introduce the basic concepts of probability, one and two dimensional random variables with applications to engineering which can describe real life phenomenon.
- To understand the basic concepts of random processes which are widely used in communication networks.
- To acquaint with specialized random processes which are apt for modelling the real time scenario.
- To understand the concept of correlation and spectral densities.
- To understand the significance of linear systems with random inputs.

UNIT I RANDOM VARIABLES

9

Discrete and continuous random variables – Moments – Moment generating functions – Joint Distribution-Covariance and Correlation – Transformation of a random variable.

UNIT II RANDOM PROCESSES

9

Classification – Characterization – Cross correlation and Cross covariance functions - Stationary Random Processes – Markov process - Markov chain.

UNIT III SPECIAL RANDOM PROCESSES

9

Bernoulli Process – Gaussian Process - Poisson process – Random telegraph process.

UNIT IV CORRELATION AND SPECTRAL DENSITIES

q

Auto correlation functions – Cross correlation functions – Properties – Power spectral density – Cross spectral density – Properties.

UNIT V LINEAR SYSTEMS WITH RANDOM INPUTS

Q

Linear time invariant system – System transfer function – Linear systems with random inputs – Auto correlation and cross correlation functions of input and output.

TOTAL: 45 PERIODS

OUTCOMES

Upon successful completion of the course, students should be able to:

- Understand the basic concepts of one and two dimensional random variables and apply in engineering applications.
- Apply the concept random processes in engineering disciplines.
- Understand and apply the concept of correlation and spectral densities.
- Get an exposure of various distribution functions and help in acquiring skills in handling situations involving more than one variable.
- Analyze the response of random inputs to linear time invariant systems.

TEXT BOOKS

- 1. Ibe, O.C.," Fundamentals of Applied Probability and Random Processes ", 1st Indian Reprint, Elsevier, 2007.
- 2. Peebles, P.Z., "Probability, Random Variables and Random Signal Principles ", Tata McGraw Hill, 4th Edition, New Delhi, 2002.

REFERENCES

- 1. Cooper. G.R., McGillem. C.D., "Probabilistic Methods of Signal and System Analysis", Oxford University Press, New Delhi, 3rd Indian Edition, 2012.
- 2. Hwei Hsu, "Schaum's Outline of Theory and Problems of Probability, Random Variables and Random Processes ", Tata McGraw Hill Edition, New Delhi, 2004.
- 3. Miller. S.L. and Childers. D.G., "Probability and Random Processes with Applications to Signal Processing and Communications", Academic Press, 2004.
- 4. Stark. H. and Woods. J.W., "Probability and Random Processes with Applications to Signal Processing ", Pearson Education, Asia, 3rd Edition, 2002.
- 5. Yates. R.D. and Goodman. D.J., "Probability and Stochastic Processes", Wiley India Pvt. Ltd., Bangalore, 2nd Edition, 2012.

	РО	PO	PO	РО	PO	PO	PO	РО	PO	PO	PO	РО	PS	PS	PS
	01	02	03	04	05	06	07	08	09	10	11	12	01	02	О3
CO1	3	3	0	0	0	0	0	0	3	0	0	2	-	-	-
CO2	3	3	0	0	0	0	0	0	3	0	0	2	-	-	-
CO3	3	3	0	0	0	0	0	0	3	0	0	2	-	-	-
CO4	3	3	0	0	0	0	0	0	3	0	0	2	-	-	-
CO5	3	3	0	0	0	0	0	0	3	0	0	2	-	-	-
Ava	3	3	0	0	0	0	0	0	3	0	0	2	-	_	_

QUEUEING AND RELIABILITY MODELLING

LT P C 3 0 0 3

OBJECTIVES:

- To provide necessary basic concepts in probability and random processes for applications such as random signals, linear systems in communication engineering.
- To understand the concept of queueing models and apply in engineering.
- To provide the required mathematical support in real life problems and develop probabilistic models which can be used in several areas of science and engineering.
- To study the system reliability and hazard function for series and parallel systems.
- To implement Markovian Techniques for availability and maintainability which opens up new avenues for research.

UNIT I RANDOM PROCESSES

۵

Classification – Stationary process – Markov process – Poisson process – Discrete parameter Markov chain – Chapman Kolmogorov equations – Limiting distributions.

UNIT II MARKOVIAN QUEUEING MODELS

9

Markovian queues – Birth and death processes – Single and multiple server queueing models – Little's formula - Queues with finite waiting rooms.

UNIT III ADVANCED QUEUEING MODELS

9

M/G/1 queue - Pollaczek Khinchin formula - M/D/1 and $M/E_K/1$ as special cases - Series queues - Open Jackson networks.

UNIT IV SYSTEM RELIABILITY

a

Reliability and hazard functions- Exponential, Normal, Weibull and Gamma failure distribution – Time - dependent hazard models – Reliability of Series and Parallel Systems.

UNIT V MAINTAINABILITY AND AVAILABILITY

9

Maintainability and Availability functions – Frequency of failures – Two Unit parallel system with repair – k out of m systems.

TOTAL: 45 PERIODS

OUTCOMES

Upon successful completion of the course, students should be able to:

- Enable the students to apply the concept of random processes in engineering disciplines.
- Students acquire skills in analyzing various queueing models.
- Students can understand and characterize phenomenon which evolve with respect to time in a probabilistic manner.
- Students can analyze reliability of the systems for various probability distributions.
- Students can be able to formulate problems using the maintainability and availability analyses by using theoretical approach.

TEXT BOOKS

- 1. Shortle J.F, Gross D, Thompson J.M, Harris C.M., "Fundamentals of Queueing Theory", John Wiley and Sons, New York. 2018.
- 2. Balagurusamy E., "Reliability Engineering", Tata McGraw Hill Publishing Company Ltd., New Delhi, 2010.

REFERENCES

- 1. Medhi J, "Stochastic models of Queueing Theory", Academic Press, Elsevier, Amsterdam, 2003.
- 2. Taha, H.A., "Operations Research", 9th Edition, Pearson India Education Services, Delhi, 2016.
- 3. Trivedi, K.S., "Probability and Statistics with Reliability, Queueing and Computer Science Applications", 2nd Edition, John Wiley and Sons, 2002.
- 4. Govil A.K., "Reliability Engineering", Tata-McGraw Hill Publishing Company Ltd., New Delhi, 1983.

	PO	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	
	01	02	03	04	05	06	07	08	09	10	11	12	01	02	О3	
CO1	3	3	0	0	0	0	0	0	2	0	0	2	-	-	-	
CO2	3	3	2	0	0	0	0	0	2	0	0	2	-	-	-	
CO3	3	3	0	2	0	0	0	0	2	0	0	2	-	-	-	
CO4	3	3	2	0	0	0	0	0	2	0	0	2	-	-	-	
CO5	3	3	3	2	0	0	0	0	2	0	0	2	-	-	-	
Ava	3	3	1 4	0.8	0	0	0	0	2	0	0	2	_	_	_	П

OMG354 PRODUCTION AND OPERATIONS MANAGEMENT FOR ENTREPRENEURS

L T P C 3 0 0 3

OBJECTIVES:

- To know the basic concept and function of Production and Operation Management for entrepreneurship.
- To understand the Production process and planning.
- To understand the Production and Operations Management Control for business owners.

UNIT I INTRODUCTION TO PRODUCTION AND OPERATIONS MANGEMENT 9

Functions of Production Management - Relationship between production and other functions - Production management and operations management, Characteristics of modern production and operation management, organisation of production function, recent trends in production /operations management - production as an organisational function, decision making in production Operations research

UNIT II PRODUCTION & OPERATION SYSTEMS

۵

Production Systems- principles – Models - CAD and CAM- Automation in Production - Functions and significance- Capacity and Facility Planning: Importance of capacity planning- Capacity measurement – Capacity Requirement Planning (CRP) process for manufacturing and service industry

UNIT III PRODUCTION & OPERATIONS PLANNING

0

Facility Planning – Location of facilities – Location flexibility – Facility design process and techniques – Location break even analysis-Production Process Planning: Characteristic of production process systems – Steps for production process- Production Planning Control Functions – Planning phase-Action phase- Control phase - Aggregate production planning

UNIT IV PRODUCTION & OPERATIONS MANAGEMENT PROCESS

9

Process selection with PLC phases- Process simulation tools- Work Study – Significance – Methods, evolution of normal/ standard time – Job design and rating - Value Analysis - Plant Layout: meaning – characters – Plant location techniques - Types- MRP and Layout Design - Optimisation and Theory of Constraints (TOC)– Critical Chain Project Management (CCPM)- REL (Relationship) Chart – Assembly line balancing – Plant design optimisation -Forecasting methods.

UNIT V CONTROLING PRODUCTION & OPERATIONS MANAGEMENT 9

Material requirement planning (MRP)- Concept- Process and control - Inventory control systems and techniques – JIT and Lean manufacturing - Network techniques - Quality Management: Preventive Vs Breakdown maintenance for Quality – Techniques for measuring quality - Control Chart (X , R , p , np and C chart) - Cost of Quality, Continuous improvement (Kaizen) - Quality awards - Supply Chain Management - Total Quality Management - 6 Sigma approach and Zero Defect Manufacturing.

TOTAL 45: PERIODS

COURSE OUTCOMES

Upon completion of this course the learners will be able:

- CO1: To understand the basics and functions of Production and Operation Management for business owners.
- CO2: To learn about the Production & Operation Systems.
- CO3: To acquaint on the Production & Operations Planning Techniques followed by entrepreneurs in Industries.
- CO4: To known about the Production & Operations Management Processes in organisations.
- CO5: To comprehend the techniques of controlling, Production and Operations in industries.

REFERENCES

- Mikell P. Groover, Automation, Production Systems, and Computer-Integrated Manufacturing, Pearson, 2007.
- 2. Amitabh Raturi, Production and Inventory Management, , 2008.
- 3. Adam Jr. Ebert, Production and Operations Management, PHI Publication, 1992.
- 4. Muhlemann, Okland and Lockyer, Production and Operation Management, Macmillan India,1992.
- 5. Chary S.N, Production and Operations Management, TMH Publications, 2010.
- 6. Terry Hill ,Operation Management. Pal Grave McMillan (Case Study).2005.

OMG355

MULTIVARIATE DATA ANALYSIS

L T P C 3 0 0 3

OBJECTIVE:

To know various multivariate data analysis techniques for business research.

UNIT I INTRODUCTION

9

Uni-variate, Bi-variate and Multi-variate techniques – Classification of multivariate techniques – Guidelines for multivariate analysis and interpretation.

UNIT II PREPARING FOR MULTIVARIATE ANALYSIS

9

Conceptualization of research model with variables, collection of data — Approaches for dealing with missing data — Testing the assumptions of multivariate analysis.

UNIT III MULTIPLE LINEAR REGRESSION ANALYSIS, FACTOR ANALYSIS

9

Multiple Linear Regression Analysis – Inferences from the estimated regression function – Validation of the model. -Approaches to factor analysis – interpretation of results.

UNIT IV LATENT VARIABLE TECHNIQUES

9

Confirmatory Factor Analysis, Structural equation modelling, Mediation models, Moderation models, Longitudinal studies.

UNIT V ADVANCED MULTIVARIATE TECHNIQUES

9

TOTAL: 45 PERIODS

Multiple Discriminant Analysis, Logistic Regression, Cluster Analysis, Conjoint Analysis, multidimensional scaling.

OUTCOMES:

 Demonstrate a sophisticated understanding of the concepts and methods; know the exact scopes and possible limitations of each method; and show capability of using multivariate techniques to provide constructive guidance in decision making.

- Use advanced techniques to conduct thorough and insightful analysis, and interpret the results correctly with detailed and useful information.
- Show substantial understanding of the real problems; conduct deep analysis using correct methods; and draw reasonable conclusions with sufficient explanation and elaboration.
- Write an insightful and well-organized report for a real-world case study, including thoughtful and convincing details.
- Make better business decisions by using advanced techniques in data analytics.

REFERENCES:

- 1. Joseph F Hair, Rolph E Anderson, Ronald L. Tatham & William C. Black, Multivariate Data Analysis, Pearson Education, New Delhi, 2005.
- 2. Barbara G. Tabachnick, Linda S.Fidell, Using Multivariate Statistics, 6th Edition, Pearson, 2012.
- 3. Richard A Johnson and Dean W.Wichern, Applied Multivariate Statistical Analysis, Prentice Hall, New Delhi, 2005.
- 4. David R Anderson, Dennis J Seveency, and Thomas A Williams, Statistics for Business and Economics, Thompson, Singapore, 2002

OME352

ADDITIVE MANUFACTURING

L T P C 3 0 0 3

COURSE OBJECTIVES:

To introduce the development, capabilities, applications, of Additive Manufacturing (AM), and its business opportunities.

To be acquainted with vat polymerization and material extrusion processes

To be familiar with powder bed fusion and binder jetting processes.

To gain knowledge on applications of direct energy deposition, and material jetting processes.

To impart knowledge on sheet lamination and direct write technologies.

UNIT I INTRODUCTION

۵

Overview - Need - Development of Additive Manufacturing (AM) Technology: Rapid Prototyping- Rapid Tooling - Rapid Manufacturing - Additive Manufacturing. AM Process Chain - ASTM/ISO 52900 Classification - Benefits - AM Unique Capabilities - AM File formats: STL, AMF Applications: Building Printing, Bio Printing, Food Printing, Electronics Printing, Automobile, Aerospace, Healthcare. Business Opportunities in AM.

UNIT II VAT POLYMERIZATION AND MATERIAL EXTRUSION

9

Photo polymerization: Stereolithography Apparatus (SLA)- Materials -Process - top down and bottom up approach - Advantages - Limitations - Applications. Digital Light Processing (DLP) - Process - Advantages - Applications.

Material Extrusion: Fused Deposition Modeling (FDM) - Process-Materials -Applications and Limitations.

UNIT III POWDER BED FUSION AND BINDER JETTING

9

Powder Bed Fusion: Selective Laser Sintering (SLS): Process - Powder Fusion Mechanism - Materials and Application. Selective Laser Melting (SLM), Electron Beam Melting (EBM): Materials - Process - Advantages and Applications.

Binder Jetting: Three-Dimensional Printing - Materials - Process - Benefits - Limitations - Applications.

UNIT IV MATERIAL JETTING AND DIRECTED ENERGY DEPOSITION

9

Material Jetting: Multijet Modeling- Materials - Process - Benefits - Applications.

Directed Energy Deposition: Laser Engineered Net Shaping (LENS) - Process - Material Delivery - Materials -Benefits -Applications.

UNIT V SHEET LAMINATION AND DIRECT WRITE TECHNOLOGY

9

Sheet Lamination: Laminated Object Manufacturing (LOM)- Basic Principle- Mechanism: Gluing or Adhesive Bonding - Thermal Bonding - Materials - Application and Limitation.

Ink-Based Direct Writing (DW): Nozzle Dispensing Processes, Inkjet Printing Processes, Aerosol DW - Applications of DW.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of this course students shall be able to:

CO1: Recognize the development of AM technology and how AM technology propagated into various businesses and developing opportunities.

CO2: Acquire knowledge on process vat polymerization and material extrusion processes and its applications.

CO3: Elaborate the process and applications of powder bed fusion and binder jetting.

CO4: Evaluate the advantages, limitations, applications of material jetting and directed energy deposition processes.

CO5: Acquire knowledge on sheet lamination and direct write technology.

TEXT BOOKS:

- 1. Ian Gibson, David Rosen, Brent Stucker, Mahyar Khorasani "Additive manufacturing technologies". 3rd edition Springer Cham, Switzerland. (2021). ISBN: 978-3-030-56126-0
- 2. Andreas Gebhardt and Jan-Steffen Hötter "Additive Manufacturing: 3D Printing for Prototyping and Manufacturing", Hanser publications, United States, 2015, ISBN: 978-1-56990-582-1.

REFERENCES:

- 1. Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Manufacturing", Hanser Gardner Publication, Cincinnati., Ohio, 2011, ISBN :9783446425521.
- 2. Milan Brandt, "Laser Additive Manufacturing: Materials, Design, Technologies, and Applications", Woodhead Publishing., United Kingdom, 2016, ISBN: 9780081004333.
- 3. Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition, CRC Press., United States, 2015, ISBN-13: 978-1482223590.
- 4. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer., United States ,2006, ISBN: 978-1-4614-9842-1.
- 5. Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press., United States, 2011, ISBN: 9780849334092.

CME343 NEW PRODUCT DEVELOPMENT L T P C 3 0 0 3

COURSE OBJECTIVES

- 1 To introduce the fundamental concepts of the new product development
- 2 To develop material specifications, analysis and process.
- To Learn the Feasibility Studies & reporting of new product development.
- To study the New product qualification and Market Survey on similar products of new product development
 - To learn Reverse Engineering. Cloud points generation, converting cloud data to 3D model

UNIT – I FUNDAMENTALS OF NPD

9

Introduction – Reading of Drawing – Grid reading, Revisions, ECN (Engg. Change Note), Component material grade, Specifications, customer specific requirements – Basics of monitoring of NPD applying Gantt chart, Critical path analysis – Fundamentals of BOM (Bill of Materials), Engg. BOM & Manufacturing BOM. Basics of MIS software and their application in industries like SAP, MS Dynamics, Oracle ERP Cloud – QFD.

UNIT – II MATERIAL SPECIFICATIONS, ANALYSIS & PROCESS

9

Material specification standards – ISO, DIN, JIS, ASTM, EN, etc. – Awareness on various manufacturing process like Metal castings & Forming, Machining (Conventional, 3 Axis, 4 Axis, 5 Axis,), Fabrications, Welding process. Qualifications of parts mechanical, physical & Chemical properties and their test report preparation and submission. Fundamentals of DFMEA & PFMEA, Fundamentals of FEA, Bend Analysis, Hot Distortion, Metal and Material Flow, Fill and Solidification analysis.

UNIT - III ESSENTIALS OF NPD

9

RFQ (Request of Quotation) Processing – Feasibility Studies & reporting – CFT (Cross Function Team) discussion on new product and reporting – Concept design, Machine selection for tool making, Machining – Manufacturing Process selection, Machining Planning, cutting tool selection – Various Inspection methods – Manual measuring, CMM – GOM (Geometric Optical Measuring), Lay out marking and Cut section analysis. Tool Design and Detail drawings preparation, release of details to machine shop and CAM programing. Tool assembly and shop floor trials. Initial sample submission with PPAP documents.

UNIT - IV CRITERIONS OF NPD

9

New product qualification for Dimensions, Mechanical & Physical Properties, Internal Soundness proving through X-Ray, Radiography, Ultrasonic Testing, MPT, etc. Agreement with customer for testing frequencies. Market Survey on similar products, Risk analysis, validating samples with simulation results, Lesson Learned & Horizontal deployment in NPD.

UNIT – V REPORTING & FORWARD-THINKING OF NPD

9

Detailed study on PPAP with 18 elements reporting, APQP and its 5 Sections, APQP vs PPAP, Importance of SOP (Standard Operating Procedure) – Purpose & documents, deployment in shop floor. Prototyping & RPT - Concepts, Application and its advantages, 3D Printing – resin models, Sand cores for foundries; Reverse Engineering. Cloud points generation, converting cloud data to 3D model – Advantages & Limitation of RE, CE (Concurrent Engineering) – Basics, Application and its advantages in NPD (to reduce development lead time, time to Market, Improve productivity and product cost.)

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to

- 1. Discuss fundamental concepts and customer specific requirements of the New Product development
- 2. Discuss the Material specification standards, analysis and fabrication, manufacturing process.
- 3. Develop Feasibility Studies & reporting of New Product development
- 4. Analyzing the New product qualification and Market Survey on similar products of new product development
- 5. Develop Reverse Engineering. Cloud points generation, converting cloud data to 3D model

TEXT BOOKS:

- 1. Product Development Sten Jonsson
- 2. Product Design & Development Karl T. Ulrich, Maria C. Young, Steven D. Eppinger

REFERENCES:

- 1. Revolutionizing Product Development Steven C Wheelwright & Kim B. Clark
- 2. Change by Design
- 3. Toyota Product Development System James Morgan & Jeffrey K. Liker
- 4. Winning at New Products Robert Brands 3rd Edition
- 5. Product Design & Value Engineering Dr. M.A. Bulsara &Dr. H.R. Thakkar

						РО								PSO	
СО	1	2	3	4	5	6	7	8	9	1 0	1	1 2	1	2	3
1	1	1	3	1				1	1			1	1	3	2
2	1	1	3	1				1	1			1	1	3	2
3	1	1	3	1				1	1			1	1	3	2
4	1	1	3	1				1	1			1	1	3	2
5	1	1	3	1				1	1			1	1	3	2
				Low	/ (1) ;	Ме	dium	(2);	Hi	gh (3)				

OME355 INDUSTRIAL DESIGN & RAPID PROTOTYPING TECHNIQUES

LTPC 3 0 0 3

OBJECTIVES:

The course aims to

- Outline Fundamental concepts in UI & UX
- Introduce the principles of Design and Building an mobile app
- Illustrate the use of CAD in product design
- Outline the choice and use of prototyping tools
- Understanding design of electronic circuits and fabrication of electronic devices

UNIT I UI/UX 9

Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Color theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives

UNIT II APP DEVELOPMENT

9

SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application.

UNIT III INDUSTRIAL DESIGN

9

Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing

UNIT IV MECHANICAL RAPID PROTOTYPING

9

Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping; 3D Printing and classification - Laser Cutting and engraving - RD Works - Additive manufacturing

UNIT V ELECTRONIC RAPID PROTOTYPING

9

Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA

TOTAL: 45 PERIODS

Course Outcomes

At the end of the course, learners will be able to:

- Create quick UI/UX prototypes for customer needs
- Develop web application to test product traction / product feature
- Develop 3D models for prototyping various product ideas
- Built prototypes using Tools and Techniques in a quick iterative methodology

Text Books

- 1. Peter Fiell, Charlotte Fiell, Industrial Design A-Z, TASCHEN America Llc(2003)
- 2. Samar Malik, Autodesk Fusion 360 The Master Guide.
- 3. Steve Krug, Don't Make Me Think, Revisited: A Common Sense Approach to Web Usability, Pearson,3rd edition(2014)

References

- 1. https://www.adobe.com/products/xd/learn/get-star-ted.html
- 2. https://developer.android.com/quide
- 3. https://help.autodesk.com/view/fusion360/ENU/courses/
- 4. https://help.prusa3d.com/en/category/prusaslicer-204

MF3010

MICRO AND PRECISION ENGINEERING

LT P C 3 0 0 3

COURSE OBJECTIVES:

At the end of this course the student should be able to

- Learn about the precision machine tools
- Learn about the macro and micro components.
- Understand handling and operating of the precision machine tools.
- Learn to work with miniature models of existing machine tools/robots and other instruments.
- Learn metrology for micro system

UNIT I INTRODUCTION TO MICROSYSTEMS

9

Design, and material selection, micro-actuators: hydraulic, pneumatic, electrostatic/ magnetic etc. for medical to general purpose applications. Micro-sensors based on Thermal, mechanical, electrical properties; micro-sensors for measurement of pressure, flow, temperature, inertia, force, acceleration, torque, vibration, and monitoring of manufacturing systems.

UNIT II FABRICATION PROCESSES FOR MICRO-SYSTEMS:

9

Additive, subtractive, forming process, microsystems-Micro-pumps, micro-turbines, micro engines, micro-robot, and miniature biomedical devices

UNIT III INTRODUCTION TO PRECISION ENGINEERING

9

Machine tools, holding and handling devices, positioning fixtures for fabrication/ assembly of microsystems. Precision drives: inch worm motors, ultrasonic motors, stick-slip mechanism and other piezo-based devices.

UNIT IV PRECISION MACHINING PROCESSES

9

Precision machining processes for macro components - Diamond turning, fixed and free abrasive processes, finishing processes.

UNIT V METROLOGY FOR MICRO SYSTEMS

9

Metrology for micro systems - Surface integrity and its characterization.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon the completion of this course the students will be able to

- Select suitable precision machine tools and operate
- Apply the macro and micro components for fabrication of micro systems.
- Apply suitable machining process
- Able to work with miniature models of existing machine tools/robots and other instruments.
- Apply metrology for micro system

TEXT BOOKS:

- 1. Davim, J. Paulo, ed. Microfabrication and Precision Engineering: Research and Development. Woodhead Publishing, 2017
- 2. Gupta K, editor. Micro and Precision Manufacturing. Springer; 2017

REFERENCES:

- 1. Dornfeld, D., and Lee, D. E., Precision Manufacturing, 2008, Springer.
- 2. H. Nakazawa, Principles of Precision Engineering, 1994, Oxford University Press.
- 3. Whitehouse, D. J., Handbook of Surface Metrology, Institute of Physics Publishing, Philadelphia PA. 1994.
- 4. Murthy.R.L, —Precision Engineering in Manufacturingll, New Age International, New Delhi, 2005

OMF354 COST MANAGEMENT OF ENGINEERING PROJECTS

LT P C 3 0 0 3

COURSE OBJECTIVES:

Summarize the costing concepts and their role in decision making

Infer the project management concepts and their various aspects in selection

Interpret costing concepts with project execution

Develop knowledge of costing techniques in service sector and various budgetary control techniques Illustrate with quantitative techniques in cost management

UNIT – I INTRODUCTION TO COSTING CONCEPTS

9

Objectives of a Costing System; Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost; Creation of a Database for operational control.'

UNIT – II INTRODUCTION TO PROJECT MANAGEMENT

9

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities, Detailed Engineering activities, Pre project execution main clearances and documents, Project team: Role of each member, Importance Project site: Data required with significance, Project contracts

UNIT – III PROJECT EXECUTION AND COSTING CONCEPTS

9

Project execution Project cost control, Bar charts and Network diagram, Project commissioning: mechanical and process, Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis, Various decision-making problems, Pricing strategies: Pareto Analysis, Target costing, Life Cycle Costing

UNIT – IV COSTING OF SERVICE SECTOR AND BUDGETERY CONTROL

Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Activity Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis, Budgetary Control: Flexible Budgets; Performance budgets; Zero-based budgets.

UNIT – V QUANTITATIVE TECHNIQUES FOR COST MANAGEMENT

9

9

Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Learning Curve Theory.

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon successful completion of the course, students should be able to:

CO1: Understand the costing concepts and their role in decision making.

CO2: Understand the project management concepts and their various aspects in selection.

CO3: Interpret costing concepts with project execution.

CO4: Gain knowledge of costing techniques in service sector and various budgetary control techniques.

CO5: Become familiar with quantitative techniques in cost management.

TEXT BOOKS:

- 1. John M. Nicholas, Herman Steyn Project Management for Engineering, Business and Technology, Taylor & Francis, 2 August 2020, ISBN: 9781000092561.
- 2. Albert Lester ,Project Management, Planning and Control, Elsevier/Butterworth-Heinemann, 2007, ISBN: 9780750669566, 075066956X.

REFERENCES:

- 1. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher,
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting, 1988.
- 3. Charles T. Horngren et al Cost Accounting a Managerial Emphasis, Prentice Hall of India, New Delhi, 2011.
- 4. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting, 2003.
- 5. Vohra N.D., Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd, 2007.

AU3002

BATTERIES AND MANAGEMENT SYSTEM

LTPC 3 0 0 3

COURSE OBJECTIVES:

The objective of this course is to make the students to understand the working and characteristics of different types of batteries and their management.

UNIT I ADVANCED BATTERIES

Q

Li-ion Batteries-different formats, chemistry, safe operating area, efficiency, aging. Characteristics-SOC,DOD, SOH. Balancing-Passive Balancing Vs Active Balancing. Other Batteries-NCM and NCA Batteries. *NCR18650B* specifications.

UNIT II BATTERY PACK

a

Battery Pack- design, sizing, calculations, flow chart, real and simulation Model.Peak power – definition, testing methods-relationships with Power, Temperature and ohmic Internal Resistance. Cloud based and Local Smart charging.

UNIT III BATTERY MODELLING

9

Battery Modelling Methods-Equivalent Circuit Models, Electrochemical Model, Neural Network Model. ECM Comparisons- Rint model, Thevenin model, PNGV model. State space Models- Introduction. Battery Modelling software/simulation frameworks

UNIT IV BATTERY STATE ESTIMATION

9

SOC Estimation- Definition, importance, single cell Vs series batteries SOC. Estimation Methods- Load voltage, Electromotive force, AC impedance, Ah counting, Neural networks, Neuro-fuzzy forecast method, Kalman filter. Estimation Algorithms.

UNIT V BMS ARCHITECTURE AND REAL TIME COMPONENTS

9

Battery Management System- need, operation, classification. BMS ASIC-bq76PL536A-Q1 Battery Monitor IC- CC2662R-Q1 Wireless BMS MCU. Communication Modules- CAN Open-Flex Ray-CANedge1 package.ARBIN Battery Tester. BMS Development with Modeling software and Model-Based Design.

TOTAL =45 PERIODS

COURSE OUTCOMES:

At the end of this course, students will be able to

- 1. Acquire knowledge of different Li-ion Batteries performance.
- 2. Design a Battery Pack and make related calculations.
- 3. Demonstrate a BatteryModel or Simulation.
- 4. Estimate State-of-Charges in a Battery Pack.
- 5. Approach different BMS architectures during real world usage.

TEXT BOOKS

- 1. Jiuchun Jiang and Caiping Zhang, "Fundamentals and applications of Lithium-Ion batteriesin Electric Drive Vehicles", Wiley, 2015.
- 2. Davide Andrea , "Battery Management Systems for Large Lithium-Ion Battery Packs" ARTECH House, 2010.

REFERENCE BOOKS

- 1. Developing Battery Management Systems with Simulink and Model-Based Design-whitepaper
- 2. Panasonic NCR18650B- DataSheet
- 3. bq76PL536A-Q1- IC DataSheet
- 4. CC2662R-Q1- IC DataSheet

COURSE OBJECTIVES:

• The objective of this course is to make the students to list common types of sensor and actuators used in automotive vehicles.

UNIT I INTRODUCTION TO MEASUREMENTS AND SENSORS

9

Sensors: Functions- Classifications- Main technical requirement and trends Units and standards-Calibration methods- Classification of errors- Error analysis- Limiting error- Probable error-Propagation of error- Odds and uncertainty- principle of transduction-Classification. Static characteristics- mathematical model of transducers- Zero, First and Second order transducers-Dynamic characteristics of first and second order transducers for standard test inputs.

UNIT II VARIABLE RESISTANCE AND INDUTANCE SENSORS

9

Principle of operation- Construction details- Characteristics and applications of resistive potentiometer-Strain gauges- Resistive thermometers- Thermistors- Piezoresistive sensors Inductive potentiometer-Variable reluctance transducers:- El pick up and LVDT

UNIT III VARIABLE AND OTHER SPECIAL SENSORS

9

Variable air gap type, variable area type and variable permittivity type- capacitor microphone Piezoelectric, Magnetostrictive, Hall Effect, semiconductor sensor- digital transducers-Humidity Sensor. Rain sensor, climatic condition sensor, solar, light sensor, antiglare sensor.

UNIT IV AUTOMOTIVE ACTUATORS

a

Electromechanical actuators- Fluid-mechanical actuators- Electrical machines- Direct-current machines- Three-phase machines- Single-phase alternating-current Machines - Duty-type ratings for electrical machines. Working principles, construction and location of actuators viz. Solenoid, relay, stepper motor etc.

UNIT V AUTOMATIC TEMPERATURE CONTROL ACTUATORS

9

Different types of actuators used in automatic temperature control- Fixed and variable displacement temperature control- Semi Automatic- Controller design for Fixed and variable displacement type air conditioning system.

TOTAL =45 PERIODS

COURSE OUTCOMES:

At the end of the course, the student will be able to

- 1. List common types of sensor and actuators used in vehicles.
- 2. Design measuring equipment's for the measurement of pressure force, temperature and flow.
- 3. Generate new ideas in designing the sensors and actuators for automotive application
- 4. Understand the operation of thesensors, actuators and electronic control.
- 5. Design temperature control actuators for vehicles.

TEXT BOOKS:

- 1. Doebelin's Measurement Systems: 7th Edition (SIE), Ernest O. Doebelin Dhanesh N. Manik McGraw Hill Publishers, 2019.
- 2. Robert Brandy, "Automotive Electronics and Computer System", Prentice Hall, 2001
- 3. William Kimberley," Bosch Automotive Handbook", 6th Edition, Robert Bosch GmbH, 2004.
- 4. Bosch Automotive Electrics and Automotive Electronics Systems and Components, Networking and Hybrid Drive, 5th Edition, 2007, ISBN No: 978-3-658-01783-5.

REFERENCES:

- 1. James D Halderman, "Automotive Electrical and Electronics", Prentice Hall, USA, 2013
- 2. Tom Denton, "Automotive Electrical and Electronics Systems," Third Edition, 2004, SAE International.
- 3. Patranabis.D, "Sensors and Transducers", 2nd Edition, Prentice Hall India Ltd,2003
- 4. William Ribbens, "Understanding Automotive Electronics -An Engineering Perspective," 7th Edition, Elsevier Butterworth-Heinemann Publishers, 2012.

OBJECTIVES:

- To interpret the missile space stations, space vs earth environment.
- To explain the life support systems, mission logistics and planning.
- To deploy the skills effectively in the understanding of space vehicle configuration design.
- To explain Engine system and support of space vehicle
- To interpret nose cone configuration of space vehicle

UNIT I FUNDAMENTAL ASPECTS

9

Energy and Efficiencies of power plants for space vehicles – Typical Performance Values – Mission design – Structural design aspects during launch - role of launch environment on launch vehicle integrity.

UNIT II SELECTION OF ROCKET PROPULSION SYSTEMS

9

Ascent flight mechanics – Launch vehicle selection process – Criteria for Selection for different missions – selection of subsystems – types of staging – Interfaces – selection and criteria for stages and their role in launch vehicle configuration design.

UNIT III ENGINE SYSTEMS, CONTROLS, AND INTEGRATION

9

Propellant Budget – Performance of Complete or Multiple Rocket Propulsion Systems – Engine Design – Engine Controls – Engine System Calibration – System Integration and Engine Optimization.

UNIT IV THRUST VECTOR CONTROL

9

TVC Mechanisms with a Single Nozzle – TVC with Multiple Thrust Chambers or Nozzles – Testing – Integration with Vehicle – SITVC method – other jet control methods - exhaust plume problems in space environment

UNIT V NOSE CONE CONFIGURATION

0

TOTAL: 45 PERIODS

Aerodynamic aspects on the selection of nose shape of a launch vehicle - design factors in the finalization of nose configuration with respect to payload - nose cone thermal protection system - separation of fairings - payload injection mechanism

OUTCOMES:

On successful completion of this course, the student will be able to

- Explain exotic space propulsion concepts, such as nuclear, solar sail, and antimatter.
- Apply knowledge in selecting the appropriate rocket propulsion systems.
- interpret the air-breathing propulsion suitable for initial stages and fly-back boosters.
- Analyze aerodynamics aspect, including boost-phase lift and drag, hypersonic, and re-entry.
- Adapt from aircraft engineers moving into launch vehicle, spacecraft, and hypersonic vehicle design.

OIM352

MANAGEMENT SCIENCE

LTPC 3 0 0 3

COURSE OBJECTIVES:

Of this course are

- 1. To introduce fundamental concepts of management and organization to students.
- 2. Toi mpart knowledge to students on various aspects of marketing, quality control and marketing strategies.
- 3. To make students familiarize with the concepts of human resources management.
- 4. To acquaint students with the concepts of project management and cost analysis.
- 5. To make students familiarize with the concepts of planning process and business strategies.

UNITI INTRODUCTION TO MANAGEMENT AND ORGANISATION

9

Concepts of Management and organization- nature, importance and Functions of Management, Systems Approach to Management - Taylor's Scientific Management Theory- Fayal's Principles of Management-Maslow's theory of Hierarchy of Human Needs- Douglas McGregor's TheoryX and TheoryY-HertzbergTwoFactorTheoryofMotivation-LeadershipStyles,Social responsibilities of Management, Designing Organisational Structures: Basic concepts related to Organisation -Departmentation and Decentralisation.

UNITII OPERATIONS AND MARKETING MANAGEMENT

Q

Principles and Types of Plant Layout-Methods of Production(Job, batch and Mass Production), Work Study - Basic procedure involved in Method Study and Work Measurement – Business Process Reengineering (BPR)-Statistical Quality Control:control charts for Variables and Attributes (simple Problems) and Acceptance Sampling, Objectives of Inventory control, EOQ, ABC Analysis, Purchase Procedure, Stores Management and Store Records - JIT System, Supply Chain Management, Functions of Marketing, Marketing Mix, and Marketing Strategies based on ProductLifeCycle.

UNIT III HUMAN RESOURCES MANAGEMENT

9

Concepts of HRM, HRD and Personnel Management and Industrial Relations (PMIR), HRM vs PMIR, Basic functions of HR Manager: Manpower planning, Recruitment, Selection, Training and Development, Wage and Salary Administration, Promotion, Transfer, Performance Appraisal, Grievance Handling and Welfare Administration, Job Evaluation and Merit Rating —Capability Maturity Model (CMM)Levels.

UNIT IV PROJECT MANAGEMENT

9

Network Analysis, Programme Evaluation and Review Technique (PERT), Critical Path Method(CPM), identifying critical path, Probability of Completing the project within given time, Project Cost Analysis, Project Crashing (simple problems).

UNITY STRATEGIC MANAGEMENT AND CONTEMPORARY STRATEGIC ISSUES 9

Mission, Goals, Objectives, Policy, Strategy, Programmes, Elements of Corporate Planning Process, Environmental Scanning, Value Chain Analysis, SWOT Analysis, Steps in Strategy Formulation and Implementation, Generic Strategy alternatives. Bench Marking and Balanced Score Cardas Contemporary Business Strategies.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of the course, Students will be able to

CO1:Plan an organizational structure for a given context in the organization to carryout production operations through Work-study.

CO2: Survey the markets, customers and competition better and price the given products appropriatey

CO3:Ensure quality for a given product or service.

CO4:Plan, schedule and control projects through PERTandCPM.

CO5:Evaluate strategyforabusiness orserviceorganisation.

TEXTBOOKS:

- 1. KanishkaBedi, Production and Operations Management, Oxford University Press, 2007.
- 2. Stoner, Freeman, Gilbert, Management, 6th Ed, Pearson Education, New Delhi, 2004.
- 3. Thomas N. Duening & John M. Ivancevich Management Principles and Guidelines, Biztantra, 2007.
- 4. P.VijayKumar, N.Appa Rao and Ashnab, Chnalill, CengageLearning India, 2012.

REFERECES:

- 1. KotlerPhilip and KellerKevinLane: Marketing Management, Pearson, 2012.
- 2. KoontzandWeihrich: Essentials of Management, McGrawHill, 2012.
- 3. Lawrence RJauch, R. Guptaand William F. Glueck: Business Policy and Strategic Management Science, McGraw Hill, 2012.
- 4. SamuelC.Certo:Modern Management,2012.

CO's-PO's & PSO's MAPPING

CO's			PO's										PS	O's	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3			3	3	3		3	3	2			2	3	
2	3			2	3	3		2	3	2				2	
3	3			3	2	2		3	2	2					2
4	3			3	3	2		3	2	3					3
5	3			2	3	3		2	3	3			2	1	
AVg.	3			2.6	2.8	2.6		2.6	2.6	2.4			2	2	2.5

OIM353

PRODUCTION PLANNING AND CONTROL

LTPC 3 0 0 3

COURSE OBJECTIVES:

- To understand the concept of production planning and control act work study,
- To apply the concept of product planning,
- To analyze the production scheduling,
- To apply the Inventory Control concepts.
- To prepare the manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).

UNIT I INTRODUCTION

9

Objectives and benefits of planning and control-Functions of production control-Types of production-job- batch and continuous-Product development and design-Marketing aspect - Functional aspects-Operational aspect-Durability and dependability aspect aesthetic aspect. Profit consideration-Standardization, Simplification & specialization- Break even analysis-Economics of a new design.

UNITII WORK STUDY

q

Method study, basic procedure-Selection-Recording of process - Critical analysis, Development - Implementation - Micro motion and memo motion study – work measurement - Techniques of work measurement - Time study - Production study - Work sampling - Synthesis from standard data - Predetermined motion time standards.

UNITIII PRODUCT PLANNING AND PROCESS PLANNING

a

Product planning-Extending the original product information-Value analysis-Problems in lack of product planning-Process planning and routing-Pre requisite information needed for process planning- Steps in process planning-Quantity determination in batch production-Machine capacity, balancing- Analysis of process capabilities in a multi product system.

UNITIV PRODUCTION SCHEDULING

9

Production Control Systems-Loading and scheduling-Master Scheduling-Scheduling rules-Gantt charts-Perpetual loading-Basic scheduling problems - Line of balance – Flow production scheduling-Batch production scheduling-Product sequencing – Production Control systems- Periodic batch control-Material requirement planning kanban – Dispatching-Progress reporting and expediting-Manufacturing lead time-Techniques for aligning completion times and due dates.

UNIT V INVENTORY CONTROL AND RECENT TRENDS IN PPC

9

Inventory control-Purpose of holding stock-Effect of demand on inventories-Ordering procedures. Two bin system - Ordering cycle system-Determination of Economic order quantity and economic lot size- ABC analysis - Recorder procedure-Introduction to computer integrated production planning systems- elements of Just in Time Systems-Fundamentals of MRP II and ERP.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of this course,

- CO1: The students can able to prepare production planning and control act work study,
- CO2: The students can able to prepare product planning,
- CO3:The students can able to prepare production scheduling,
- CO4:The students can able to prepare Inventory Control.
- CO5:They can plan manufacturing requirements manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).

TEXT BOOKS:

- 1. James. B. Dilworth, "Operations management Design, Planning and Control for manufacturing and services" Mcgraw Hill International edition 1992.
- 2. Martand Telsang, "Industrial Engineering and Production Management", First edition, S. Chand and Company, 2000.

REFERENCES

- 1. Chary. S.N., "Theory and Problems in Production & Operations Management", Tata McGraw Hill, 1995.
- 2. Elwood S.Buffa, and Rakesh K.Sarin, "Modern Production / Operations Management", 8th Edition John Wiley and Sons, 2000
- 3. Jain. K.C. & Aggarwal. L.N., "Production Planning Control and Industrial Management", Khanna Publishers, 1990
- 4. Kanishka Bedi, "Production and Operations management", 2nd Edition, Oxford university press, 2007.
- 5. Melynk, Denzler, "Operations management A value driven approach" Irwin Mcgraw hill.
- 6. Norman Gaither, G. Frazier, "Operations Management" 9th Edition, Thomson learning IE, 2007
- 7. Samson Eilon, "Elements of Production Planning and Control", Universal Book Corpn. 1984
- 8. Upendra Kachru, "Production and Operations Management Text and cases" 1st Edition, Excel books 2007

CO's-PO's & PSO's MAPPING

CO's	PO's											PSO's			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3			3		1				1		3		
2	3	2			3									2	
3		2			3									2	
4		2	2												
5	3	3	2											1	
AVg.	3	2.6	2		3		1				1		3	1.8	

OAE352 FUNDAMENTALS OF AERONAUTICAL ENGINEERING

LTPC 3003

OBJECTIVES:

- To acquire the knowledge on the Historical evaluation of Airplanes
- To learn the different component systems and functions
- To know the concepts of basic properties and principles behind the flight
- To learn the basics of different structures & construction
- To learn the various types of power plants used in aircrafts

UNIT I HISTORY OF FLIGHT

8

Balloon flight-ornithopter-Early Airplanes by Wright Brothers, biplanes and monoplanes, Developments in aerodynamics, materials, structures and propulsion over the years.

UNIT II AIRCRAFT CONFIGURATIONS AND ITS CONTROLS

10

Different types of flight vehicles, classifications-Components of an airplane and their functions-Conventional control, powered control- Basic instruments for flying-Typical systems for control actuation.

UNIT III BASICS OF AERODYNAMICS

9

Physical Properties and structures of the Atmosphere, Temperature, pressure and altitude relationships, Newton's Law of Motions applied to Aeronautics-Evolution of lift, drag and moment. Aerofoils, Mach number, Maneuvers.

UNIT IV BASICS OF AIRCRAFT STRUCTURES

q

General types of construction, Monocoque, semi-monocoque and geodesic constructions, typical wing and fuselage structure. Metallic and non-metallic materials. Use of Aluminium alloy, titanium, stainless steel and composite materials. Stresses and strains-Hooke's law- stress-strain diagrams- elastic constants-Factor of Safety.

UNIT V BASICS OF PROPULSION

9

Basic ideas about piston, turboprop and jet engines – use of propeller and jets for thrust production-Comparative merits, Principle of operation of rocket, types of rocket and typical applications, Exploration into space.

TOTAL: 45 PERIODS

OUTCOMES:

- Illustrate the history of aircraft & developments over the years
- Ability to identify the types & classifications of components and control systems
- Explain the basic concepts of flight & Physical properties of Atmosphere
- Identify the types of fuselage and constructions.
- Distinguish the types of Engines and explain the principles of Rocket

TEXT BOOKS

- 1. Anderson, J.D., Introduction to Flight, McGraw-Hill; 8th edition, 2015
- 2. . E Rathakrishnan, "Introduction to Aerospace Engineering: Basic Principles of Flight", John Wiley, NJ, 2021
- 3. Stephen.A. Brandt, Introduction to aeronautics: A design perspective, 2nd edition, AIAA Education Series, 2004.

REFERENCE

- 1. SADHU SINGH, "INTERNAL COMBUSTION ENGINES AND GAS TURBINE"-, SS Kataraia & sons. 2015
- 2. KERMODE, "FLIGHT WITHOUT FORMULAE", -, Pitman; 4th Revised edition 1989

COURSE OBJECTIVES:

- 1. Demonstrate an understanding of how occupational hygiene standards are set and used in work health and safety.
- 2. Compare and contrast the roles of environmental and biological monitoring in work health and safety
- 3. Outline strategies for identifying, assessing and controlling risks associated with airborne gases, vapours and particulates
- 4. Discuss how personal protective equipment can be used to reduce risks associated with workplace exposures
- 5. Provide high-level advice on managing and controlling noise and noise-related hazards

UNIT I: INTRODUCTION AND SCOPE

9

Occupational Health and Environmental Safety Management - Principles practices. Comm on Occupational diseases: Occupational Health Management Services at the work place. Pre-employment, periodic medical examination of workers, medical surveillance for control of occupational diseases and health records.

UNIT II: MONITORING FOR SAFETY, HEALTH & ENVIRONMENT

9

Occupational Health and Environment Safety Management System, ILO and EPA Standards Industrial Hygiene: Definition of Industrial Hygiene, Industrial Hygiene: Control Methods, Substitution, Changing the process, Local Exhaust Ventilation, Isolation, Wet method, Personal hygiene, housekeeping and maintenance, waste disposal, special control measures.

UNIT III: OCCUPATIONAL HEALTH AND ENVIRONMENTAL SAFETY EDUCATION

9

Element of training cycle, Assessment of needs. Techniques of training, design and development of training programs. Training methods and strategies types of training. Evaluation and review of training programs. Occupational Health Hazards, Promoting Safety, Safety and Health training, Stress and Safety, Exposure Limit.

UNIT IV: OCCUPATIONAL SAFETY, HEALTH AND ENVIRONMENT MANAGEMENT

9

Bureau of Indian standards on safety and health 14489 - 1998 and 15001 – 2000, OSHA, Process Safety Management (PSM) as per OSHA, PSM principles, OHSAS – 18001, EPA Standards, Performance measurements to determine effectiveness of PSM. Importance of Industrial safety, role of safety department,

UNIT-V INDUSTRIAL HAZARDS

9

i. Radiation: Types and effects of radiation on human body, Measurement and detection of radiation intensity. Effects of radiation on human body, Measurement – disposal of radioactive waste, Control of radiation ii. Noise and Vibration: Sources, and its control, Effects of noise on the auditory system and health, Measurement of noise, Different air pollutants in industries, Effect of different gases and particulate matter, acid fumes, smoke, fog on human health, Vibration: effects.

TOTAL PERIODS: 45

COURSE OUTCOMES:

Students able to

CO1: Explain and apply human factors engineering concepts in both evaluation of existing systems and design of new systems

CO2: Specify designs that avoid occupation related injuries

CO3: Define and apply the principles of work design, motion economy, and work environment design.

CO4: Identify the basic human sensory, cognitive, and physical capabilities and limitations with respect to human-machine system performance.

CO5: Acknowledge the impact of workplace design and environment on productivity

TEXT BOOKS:

- 1. R. K. Jain and Sunil S. Rao, Industrial Safety, Health and Environment Management Systems, Khanna publishers, New Delhi (2006)
- 2. Slote. L, Handbook of Occupational Safety and Health, John Willey and Sons, New York .

REFERENCES:

- 1. Jeanne MagerStellman, Encyclopedia of Occupational Health and Safety (ILO) Ms. Irma Jourdan publication
- 2. Frank P Lees Loss of prevention in Process Industries, Vol. 1 and 2,
- 3. ButterworthHeinemann Ltd., London (1991). 2. Industrial Safety National Safety Council of India
- 4. Frank P Lees Loss of prevention in Process Industries , Vol. 1 and 2, Butterworth- Heinemann Ltd., London
- 5. R. K. Jain and Sunil S. Rao, Industrial Safety, Health and Environment Management Systems, Khanna publishers, New Delhi (2006).

CO's-PO's & PSO's MAPPING

CO,		PO's													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2		2		2	-	-	-	-	-	2	-	-	-	-
2	-		2		-	-	1	-	-	-	1	-	-	-	-
3	-		-		2	-	-	-	-	-	2	-	-	-	-
4	-		-		-	-	-	-	2	-	3	-	-	-	-
5	-		-		-	-	-	1	-	-	-	-	-	-	-
AV	2	-	2	-	-	-	1	1	2	-	2		-	-	-

OSF353

CHEMICAL PROCESS SAFETY

L T P C 3 0 0 3

COURSE OBJECTIVES

- Teach the principles of safety applicable to the design, and operation of chemical process plants.
- Ensure that potential hazards are identified and mitigation measures are in place to prevent unwanted release of energy.
- Learn about the hazardous chemicals into locations that could expose employees and others to serious harm.
- Focuses on preventing incidents and accidents during large scale manufacturing of chemicals and pharmaceuticals.
- Ensure that the general design of the plant is capable of complying with the dose limits in force and with the radioactive releases.

UNIT ISAFETY IN THE STORAGE AND HANDLING OF CHEMICALS AND GASES

Types of storage-general considerations for storage layouts- atmospheric venting, pressure and temperature relief - relief valve sizing calculations - storage and handling of hazardous chemicals and industrial gases, safe disposal methods, reaction with other chemicals, hazards during transportation - pipe line transport - safety in chemical laboratories.

UNIT II CHEMICAL REACTION HAZARDS

9

Hazardous inorganic and organic reactions and processes, Reactivity as a process hazard, Detonations, Deflagrations, and Runaways, Assessment and Testing strategies, Self - heating hazards of solids, Explosive potential of chemicals, Structural groups and instability of chemicals, Thermochemical screening,

UNIT III SAFETY IN THE DESIGN OF CHEMICAL PROCESS PLANTS

Design principles -Process design development -types of designs, feasibility survey, preliminary design, Flow diagrams, piping and instrumentation diagram, batch versus continuous operation, factors in equipment scale up and design, equipment specifications - reliability and safety in designing - inherent safety - engineered safety - safety during startup and shutdown - non destructive testing methods - pressure and leak testing - emergency safety devices - scrubbers and flares- new concepts in safety design and operation- Pressure vessel testing standards- Inspection techniques for boilers and reaction vessels.

UNIT IV SAFETY IN THE OPERATION OF CHEMICAL PROCESS PLANTS

Properties of chemicals - Material Safety Data Sheets - the various properties and formats used - methods available for property determination. Operational activities and hazards -standards operating procedures - safe operation of pumps, compressors, heaters, column, reactors, pressure vessels, storage vessels, piping systems - effects of pressure, temperature, Flow rate and humidity on operations - corrosion and control measures- condition monitoring - control valves - safety valves - pressure reducing valves, drains, bypass valves, inert gases. Chemical splashes, eye irrigation and automatic showers.

UNIT V SAFETY AND ANALYSIS

9

9

Safety vs reliability- quantification of basic events, system safety quantification, Human error analysis, Accident investigation and analysis, OSHAS 18001 and OSHMS.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Students able to

CO1 Differentiate between inherent safety and engineered safety and recognize the importance of safety in the design of chemical process plants.

CO2 Develop thorough knowledge about safety in the operation of chemical plants.

CO3Apply the principles of safety in the storage and handling of gases.

CO4Identify the conditions that lead to reaction hazards and adopt measures to prevent them.

CO5Develop thorough knowledge about

TEXT BOOK

- 1 David A Crowl& Joseph F Louvar,"Chemical Process safety", Pearson publication, 3rd Edition, 2014
- 2 Maurice Jones .A,"Fire Protection Systems,2nd edition, Jones & Bartlett Publishers,2015

REFERENCES:

- 1. Ralph King and Ron Hirst,"King's safety in the process industries", Arnold, London, 1998.
- 2. Industrial Environment and its Evolution and Control, NIOSH Publication, 1973.
- 3. National Safety Council," Accident prevention manual for industrial operations". Chicago, 1982.
- 4. Lewis, Richard. J., Sr, "Sax's dangerous properties of materials". (Ninth edition). Van Nostrand Reinhold, New York, 1996.
- 5. Roy E Sanders, "Chemical Process Safety", 3rd Edition, Gulf professional publishing, 2006

CO's-PO's & PSO's MAPPING

CO's	PO's												PSO's		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	3	-	-	-	1	-	-	1	-	-	-	2	-	-
2	-			2	-	-	-	-	1	-		-	-	2	-
3	-	3		1	-	-	-	2	-	-	1	-	-	-	-
4	-	2	-		-	1	-	-	1	-		-	-	-	2
5	-	2	3		-	-	-	1	-	-	1	-	-	-	-
AVg.	2	2.5	3	1.5	-	1	-	1.5	1	-	1		2	2	2

ELECTRICAL, ELECTRONIC AND MAGNETIC MATERIALS

100 LTPC

COURSE OBJECTIVES:

The main learning objective of this course is to prepare the students for:

- 1. Understanding the importance of various materials used in electrical, electronics and magnetic applications
- 2. Acquiring knowledge on the properties of electrical, electronics and magnetic materials.
- 3. Gaining knowledge on the selection of suitable materials for the given application
- 4. Knowing the fundamental concepts in Semiconducting materials
- 5. Getting equipped with the materials used in optical and optoelectronic applications.

UNIT- I DIELECTRIC MATERIALS

q

Dielectric as Electric Field Medium, leakage currents, dielectric loss, dielectric strength, breakdown voltage, breakdown in solid dielectrics, flashover, liquid dielectrics, electric conductivity in solid, liquid and gaseous dielectrics, Ferromagnetic materials, properties of ferromagnetic materials in static fields, spontaneous, polarization, curie point, anti-ferromagnetic materials, piezoelectric materials, pyroelectric materials.

UNIT - II MAGNETIC MATERIALS

9

Classification of magnetic materials, spontaneous magnetization in ferromagnetic materials, magnetic Anisotropy, Magnetostriction, diamagnetism, magnetically soft and hard materials, special purpose materials, feebly magnetic materials, Ferrites, cast and cermet permanent magnets, ageing of magnets. Factors effecting permeability and Hysteresis

UNIT - III SEMICONDUCTOR MATERIALS

Λ

Properties of semiconductors, Silicon wafers, integration techniques, Large and very large scale Integration techniques. Concept of superconductivity; theories and examples for high temperature superconductivity; discussion on specific superconducting materials; comments on fabrication and engineering applications.

UNIT – IV MATERIALS FOR ELECTRICAL APPLICATIONS

9

Materials used for Resistors, rheostats, heaters, transmission line structures, stranded conductors, bimetals fuses, soft and hard solders, electric contact materials, electric carbon materials, thermocouple materials. Solid, Liquid and Gaseous insulating materials, Effect of moisture on insulation.

UNIT - V OPTICAL AND OPTOELECTRONIC MATERIALS

9

TOTAL: 45 PERIODS

Principles of photoconductivity - effect of impurities - principles of luminescence-laser principles - He-Ne, injection lasers, LED materials - binary, ternary photoelectronic materials - LCD materials - photo detectors - applications of optoelectronic materials - optical fibres and materials - electro optic modulators - Kerr effect - Pockels effect.

COURSE OUTCOMES:

After completion of this course, the students will be able to

- 1. Understand various types of dielectric materials, their properties in various conditions.
- 2. Evaluate magnetic materials and their behavior.
- 3. Evaluate semiconductor materials and technologies.
- 4. Select suitable materials for electrical engineering applications.
- 5. Identify right material for optical and optoelectronic applications

TEXT BOOKS:

- 1. Pradeep Fulay, "Electronic, Magnetic and Optical materials", CRC Press, taylor and Francis, 2 nd illustrated edition, 2017.
- 2. "R K Rajput", "A course in Electrical Engineering Materials", Laxmi Publications, 2009.

REFERENCES:

- 1. T K Basak, "A course in Electrical Engineering Materials", New Age Science Publications, 2009
- 2. TTTI Madras, "Electrical Engineering Materials", McGraw Hill Education, 2004.
- 3. Adrianus J. Dekker, "Electrical Engineering Materials", PHI Publication, 2006.
- 4. S. P. Seth, P. V. Gupta "A course in Electrical Engineering Materials", Dhanpat Rai & amp; Sons, 2011.
- 5. C. Kittel, "Introduction to Solid State Physics", 7th Edition, John Wiley & Sons, Singapore, (2006).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	3								2	2	2	1
CO2	3	1	2	2								2	2	2	1
CO3	3	2	1	2								2	2	2	1
CO4	3	2	1	2								2	2	2	2
CO5	3	2	2	2								2	2	2	1
Avg	3	1.8	1.6	2.2								2	2	2	1.2

OML353

NANOMATERIALS AND APPLICATIONS

L T P C 3 0 0 3

COURSE OBJECTIVES:

The main learning objective of this course is to prepare the students for:

- 1. Understanding the evolution of nanomaterials in the scientific era and make them to understand different types of nanomaterials for the future engineering applications
- 2. Gaining knowledge on dimensionality effects on different properties of nanomaterials
- 3. Getting acquainted with the different processing techniques employed for fabricating nanomaterials
- 4. Having knowledge on the different characterisation techniques employed to characterise the nanomaterials
- 5. Acquiring knowledge on different applications of nanomaterials in different disciplines of engineering.

UNIT I NANOMATERIALS

q

Introduction, Classification: 0D, 1D, 2D, 3D nanomaterials and nano-composites, their mechanical, electrical, optical, magnetic properties; Nanomaterials versus bulk materials.

UNIT II THERMODYNAMICS & KINETICS OF NANOSTRUCTURED MATERIALS 9

Size and interface/interphase effects, interfacial thermodynamics, phase diagrams, diffusivity, grain growth, and thermal stability of nanomaterials.

UNIT III PROCESSING

9

Bottom-up and top-down approaches for the synthesis of nanomaterials, mechanical alloying, chemical routes, severe plastic deformation, and electrical wire explosion technique.

UNIT IV STRUCTURAL CHARACTERISTICS

9

Principles of emerging nanoscale X-ray techniques such as small angle X-ray scattering and X-ray absorption fine structure (XAFS), electron and neutron diffraction techniques and their application to nanomaterials; SPM, Nanoindentation, Grain size, phase formation, texture, stress analysis

UNIT V APPLICATIONS

q

Applications of nanoparticles, quantum dots, nanotubes, nanowires, nanocoatings; applications in electronic, electrical and medical industries

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of this course, the students will be able to

- 1. Evaluate nanomaterials and understand the different types of nanomaterials
- 2. Recognise the effects of dimensionality of materials on the properties
- 3. Process different nanomaterials and use them in engineering applications
- 4. Use appropriate techniques for characterising nanomaterials
- 5. Identify and use different nanomaterials for applications in different engineering fields.

TEXT BOOKS:

- 1. Bhusan, Bharat (Ed), "Springer Handbook of Nanotechnology", 2nd edition, 2007.
- 2. Carl C. Koch (ed.), NANOSTRUCTURED MATERIALS, Processing, Properties and Potential Applications, NOYES PUBLICATIONS, Norwich, New York, U.S.A.

REFERENCES:

- 1. Poole C.P, and Owens F.J., Introduction to Nanotechnology, John Wiley 2003
- 2. Nalwa H.S., Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers 2004
- 3. Zehetbauer M.J. and Zhu Y.T., Bulk Nanostructured Materials, Wiley 2008
- 4. Wang Z.L., Characterization of Nanophase Materials, Wiley 2000
- 5. Gutkin Y., Ovid'ko I.A. and Gutkin M., Plastic Deformation in Nanocrystalline Materials, Springer 2004

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	2	2	2	3								2	1	2	
C02	3	1	2	2								2	2	2	1
C03	3	2	1	2								2	2	2	
CO4	3	1		2								2	2	2	2
CO5	3	2	2	2								2	2	2	1
Avg	2.8	1.6	1.7	2.2								2	1.8	2	1.3

OMR352 HYDRAULICS AND PNEUMATICS L T P C 3 0 0 3

COURSE OBJECTIVES:

- 1. To knowledge on fluid power principles and working of hydraulic pumps
- 2. To obtain the knowledge in hydraulic actuators and control components
- 3. To understand the basics in hydraulic circuits and systems
- 4. To obtain the knowledge in pneumatic and electro pneumatic systems
- 5. To apply the concepts to solve the trouble shooting

UNIT – I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS

9

Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque Problems, Sources of Hydraulic power : Pumping Theory – Pump

Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of Linear and Rotary – Fixed and Variable displacement pumps – Problems.

UNIT – II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS

Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Hydraulic motors - Control Components: Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Servo and Proportional valves – Applications – Accessories: Reservoirs, Pressure Switches – Applications – Fluid Power ANSI Symbols – Problems.

UNIT – III HYDRAULIC CIRCUITS AND SYSTEMS

9

9

Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail-Safe, Speed Control, Hydrostatic transmission, Electro hydraulic circuits, Mechanical hydraulic servo systems.

UNIT – IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS

9

Properties of air – Perfect Gas Laws – Compressor – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – Cascade method – Electro Pneumatic System – Elements – Ladder diagram – Problems, Introduction to fluidics and pneumatic logic circuits

UNIT – V TROUBLE SHOOTING AND APPLICATIONS

9

Installation, Selection, Maintenance, Trouble Shooting and Remedies in Hydraulic and Pneumatic systems, Design of hydraulic circuits for Drilling, Planning, Shaping, Surface grinding, Press and Forklift applications. Design of Pneumatic circuits for Pick and Place applications and tool handling in CNC Machine tools – Low cost Automation – Hydraulic and Pneumatic power packs.

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon successful completion of the course, students should be able to:

- CO 1: Analyze the methods in fluid power principles and working of hydraulic pumps
 - CO 2: Recognize the concepts in hydraulic actuators and control components
 - CO 3: Obtain the knowledge in basics of hydraulic circuits and systems
 - CO 4: Know about the basics concept in pneumatic and electro pneumatic systems
 - CO 5: Apply the concepts to solve the trouble shooting hydraulic and pneumatics

		N	lapp	ing c	of CC	s wi	th Po	Os a	nd P	SOs					
COs/POs &						F	Os						PS	SOs	
PSOs	1	2	3	4	5	6	7	8	9	1	1	1	1	2	3
										0	1	2			
CO1 3 2 1 2 2 1 1 2 2 1															
CO2 3 2 1 2 2 1 2 2 1 2 2 1														1	
CO3	3	2	1		2	2						1	2	2	1
CO4	3	2	1		2	2						1	2	2	1
CO5	3	2	1		2	2						1	2	2	1
CO/PO &	3	2	1		2	2						1	2	2	1
PSO															
Average															
	•	1	– Slig	ght, 2	$-\overline{M}$	odera	ate, 3	3 – S	ubst	antial	•		•		

TEXT BOOKS

- 1. Anthony Esposito, "Fluid Power with Applications", Prentice Hall, 2009.
- 2. James A. Sullivan, "Fluid Power Theory and Applications", Fourth Edition, Prentice Hall, 1997.

REFERENCES

- 1. Shanmugasundaram.K, "Hydraulic and Pneumatic Controls". Chand & Co. 2006.
- 2. Majumdar, S.R., "Oil Hydraulics Systems Principles and Maintenance", Tata McG Raw Hill, 2001.
- 3. Majumdar, S.R., "Pneumatic Systems Principles and Maintenance", Tata McGRaw Hill, 2007.
- 4. Dudley, A. Pease and John J Pippenger, "Basic Fluid Power", Prentice Hall, 1987
- 5. Srinivasan. R, "Hydraulic and Pneumatic Controls", Vijay Nicole Imprints, 2008
- 6. Joshi.P, Pneumatic Control", Wiley India, 2008.
- 7. Jagadeesha T, "Pneumatics Concepts, Design and Applications", Universities Press, 2015.

OMR353 SENSORS L T P C 3 0 0 3

COURSE OBJECTIVES:

- 1. To learn the various types of sensors, transducers, sensor output signal types, calibration techniques, formulation of system equation and its characteristics.
- 2. To understand basic working principle, construction, Application and characteristics of displacement, speed and ranging sensors.
- 3. To understand and analyze the working principle, construction, application and characteristics of force, magnetic and heading sensors.
- 4. To learn and analyze the working principle, construction, application and characteristics of optical, pressure, temperature and other sensors.
- 5. To familiarize students with different signal conditioning circuits design and data acquisition system.

UNIT – I SENSOR CLASSIFICATION, CHARACTERISTICS AND SIGNAL TYPES 9

Basics of Measurement – Classification of Errors – Error Analysis – Static and Dynamic Characteristics of Transducers – Performance Measures of Sensors – Classification of Sensors – Sensor Calibration Techniques – Sensor Outputs - Signal Types - Analog and Digital Signals, PWM and PPM.

UNIT – II DISPLACEMENT, PROXIMITY AND RANGING SENSORS 9

Displacement Sensors – Brush Encoders - Potentiometers, Resolver, Encoders – Optical, Magnetic, Inductive, Capacitive, LVDT – RVDT – Synchro – Microsyn, Accelerometer – Range Sensors - Ultrasonic Ranging - Reflective Beacons - Laser Range Sensor (LIDAR) – GPS - RF Beacons.

UNIT – III FORCE, MAGNETIC AND HEADING SENSORS

Strain Gage – Types, Working, Advantage, Limitation, and Applications: Load Measurement – Force and Torque Measurement - Magnetic Sensors – Types, Principle, Advantage, Limitation, and Applications - Magneto Resistive – Hall Effect, Eddy Current Sensor - Heading Sensors – Compass, Gyroscope and Inclinometers.

UNIT – IV OPTICAL, PRESSURE, TEMPERATURE AND OTHER SENSORS

Photo Conductive Cell, Photo Voltaic, Photo Resistive, LDR – Fiber Optic Sensors – Pressure – Diaphragm – Bellows - Piezoelectric - Piezo-resistive - Acoustic, Temperature – IC, Thermistor, RTD, Thermocouple – Non Contact Sensor - Chemical Sensors - MEMS Sensors - Smart Sensors.

UNIT – V SIGNAL CONDITIONING

a

Need for Signal Conditioning – Resistive, Inductive and Capacitive Bridges for Measurement - DC and AC Signal Conditioning - Voltage, Current, Power and Instrumentation Amplifiers – Filter and Isolation Circuits – Fundamentals of Data Acquisition System

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon successful completion of the course, students should be able to:

CO1: Understand various sensor effects, sensor characteristics, signal types, calibration methods and obtain transfer function and empirical relation of sensors. They can also analyze the densor response.

CO2: Analyze and select suitable sensor for displacement, proximity and range measurement.

CO3: Analyze and select suitable sensor for force, magnetic field, speed, position and direction measurement.

CO4: Analyze and Select suitable sensor for light detection, pressure and temperature measurement and also familiar with other miniaturized smart sensors.

CO5: Select and design suitable signal conditioning circuit with proper compensation and linearizing element based on sensor output signal.

			Маррі	ng o	f CO	s with	POs	and	l PS	Os					
COs/POs &						PO	S						PS	Os	
PSOs	1	2	3	4	5	6	7	8	9	1	1	1	1	2	3
										0	1	2			
CO1 3 3 2 1 2														2	1
CO2	3	3	2	1	1	1					1	2	3	2	1
CO3	3	3	2	1	1	1					1	2	3	2	1
CO4	3	3	2	1	1	1					1	2	3	2	1
CO5	3	3	2	1	1	1					1	2	3	2	1
CO/PO &	3	3	2	0	0	0					0	2	3	2	1
PSO															
Average				8	8	8					8				
		,	1 – Slig	jht, 2	<u>–</u> Мо	oderate	, 3 –	Sul	ostan	tial				,	

TEXT BOOKS

- 1. Bolton W., "Mechatronics", Pearson Education, 6th Edition, 2015.
- 2. Ramesh S Gaonkar, "Microprocessor Architecture, Programming, and Applications with the 8085", Penram International Publishing Private Limited, 6th Edition, 2013.

REFERENCÉS

- 1. Bradley D.A., Dawson D., Buru N.C. and Loader A.J., "Mechatronics", Chapman and Hall, 1993.
- 2. Davis G. Alciatore and Michael B. Histand, "Introduction to Mechatronics and Measurement systems", McGraw Hill Education, 2011.
- 3. Devadas Shetty and Richard A. Kolk, "Mechatronics Systems Design", Cengage Learning, 2010.
- 4. Nitaigour Premchand Mahalik, "Mechatronics Principles, Concepts and Applications", McGraw Hill Education, 2015.
- 5. Smaili. A and Mrad. F, "Mechatronics Integrated Technologies for Intelligent Machines", Oxford University Press, 2007.

COURSE OBJECTIVES

- 1. To introduce mobile robotic technology and its types in detail.
- 2. To learn the kinematics of wheeled and legged robot.
- 3. To familiarize the intelligence into the mobile robots using various sensors.
- 4. To acquaint the localization strategies and mapping technique for mobile robot.
- 5. To aware the collaborative mobile robotics in task planning, navigation and intelligence.

UNIT – I INTRODUCTION TO MOBILE ROBOTICS

g

Introduction – Locomotion of the Robots – Key Issues on Locomotion – Legged Mobile Roots – Configurations and Stability – Wheeled Mobile Robots – Design Space and Mobility Issues – Unmanned Aerial and Underwater Vehicles

UNIT - II KINEMATICS

9

Kinematic Models – Representation of Robot – Forward Kinematics – Wheel and Robot Constraints – Degree of Mobility and Steerability – **Manoeuvrability** – Workspace – Degrees of Freedom – Path and Trajectory Considerations – Motion Controls - Holonomic Robots

UNIT - III PERCEPTION

9

Sensor for Mobile Robots – Classification and Performance Characterization – Wheel/Motor Sensors – Heading Sensors - Ground-Based Beacons - Active Ranging - Motion/Speed Sensors – Camera - Visual Appearance based Feature Extraction.

UNIT – IV LOCALIZATION

Localization Based Navigation Versus Programmed Solutions - Map Representation - Continuous Representations - Decomposition Strategies - Probabilistic Map-Based Localization - Landmark-Based Navigation - Globally Unique Localization - Positioning Beacon Systems - Route-Based Localization - Autonomous Map Building - Simultaneous Localization and Mapping (SLAM).

UNIT – V PLANNING, NAVIGATION AND COLLABORATIVE ROBOTS

9

TOTAL: 45 PERIODS

Introduction - Competences for Navigation: Planning and Reacting - Path Planning - Obstacle Avoidance - Navigation Architectures - Control Localization - Techniques for Decomposition - Case Studies – Collaborative Robots – Swarm Robots.

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

CO1: Evaluate the appropriate mobile robots for the desired application.

CO2: Create the kinematics for given wheeled and legged robot.

CO3:Analyse the sensors for the intelligence of mobile robotics.

CO4: Create the localization strategies and mapping technique for mobile robot.

CO5: Create the collaborative mobile robotics for planning, navigation and intelligence for desired applications.

TEXTBOOK

1. Roland Siegwart and IllahR.Nourbakish, "Introduction to Autonomous Mobile Robots" MIT Press, Cambridge, 2004.

REFERENCES:

- 1. Dragomir N. Nenchev, Atsushi Konno, TeppeiTsujita, "Humanoid Robots: Modelling and Control", Butterworth-Heinemann, 2018
- 2. MohantaJagadish Chandra, "Introduction to Mobile Robots Navigation", LAP Lambert Academic Publishing, 2015.
- 3. Peter Corke, "Robotics, Vision and Control", Springer, 2017.
- 4. Ulrich Nehmzow, "Mobile Robotics: A Practical Introduction", Springer, 2003.
- 5. Xiao Qi Chen, Y.Q. Chen and J.G. Chase, "Mobile Robots State of the Art in Land, Sea, Air, and Collaborative Missions", Intec Press, 2009.

6. Alonzo Kelly, Mobile Robotics: Mathematics, Models, and Methods, Cambridge University Press, 2013, ISBN: 978-1107031159.

MV3501 MARINE PROPULSION

LTPC 3003

COOURSE OBJECTIVES:

- 1. To impart knowledge on basics of propulsion system and ship dynamic movements
- 2. To educate them on basic layout and propulsion equipment's
- 3. To impart basic knowledge on performance of the ship
- 4. To impart basic knowledge on Ship propeller and its types
- 5. To impart knowledge on ship rudder and its types

UNIT 1 BASICS SHIP PROPULSION SYSTEM AND EQUIPMENTS

9

law of floatation - Basics principle of propulsion- Earlier methods of propulsion- ship propulsion machinery-boiler, Marine steam engine, diesel engine, ship power transmission system, ship dynamic structure, Marine propulsion equipment - shaft tunnel, Intermediate shaft and bearing, stern tube, stern tube sealing etc. degree of freedom, Modern propelling methods- water jet propulsion, screw propulsion.

UNIT 2 SHIPS MOVEMENTS AND SHIP STABILIZATION

9

Thrust augmented devices, Ship hull, modern ship propulsion design, bow thruster – Advantages, various methods to stabilize the ship- passive and active stabilizer, fin stabilizer, bilge keel - stabilizing and securing ship in port- effect of tides on ship – effect of river water and sea water sailing vessel, Load line and load line of marking- draught markings.

UNIT 3 SHIPS SPEED AND ITS PERFORMANCE

0

Ship propulsion factors, factors affecting ships speed, various velocities of ship, hull drag, effects of fouling on ships hull, ship wake, relation between powers, Fuel consumption of ship, cavitations - effects of cavitation's, ship turning radius.

UNIT 4 BASICS OF PROPELLER

9

Propeller dimension, Propeller and its types – fixed propeller, control pitch propeller, kort nozzle, ducted propeller, voith schneider, Parts of propeller, 3 blade - 5 blade - 6 blade propellers and its advantages, propeller boss hub, crown nut, propeller skew, pitch of propeller - Thrust creation by propeller. Propeller Material – Propeller balancing- static and dynamic.

UNIT 5 BASICS OF RUDDER

9

TOTAL: 45 PERIODS

Rudder dimension, Area of rudder and its design, Rudder arrangements, Rudder fittings- Rudder pintle - Rudder types- Balanced rudder, semi balanced rudder, Spade rudder, merits and demerits of various types of rudders, Propeller and rudder interaction, Rudder stopper, movement of rudders, Basic construction of Rudder

COURSE OUTCOMES:

Upon successful completion of the course, students should be able to:

CO1: Explain the basics of propulsion system and ship dynamic movements

CO2: Familiarize with various components assisting ship stabilization.

CO3: Demonstrate the performance of the ship.

CO4: Classify the Propeller and its types, Materials etc.

CO5: Categories the Rudder and its types, design criteria of rudder.

TEXT BOOKS:

1. GP. Ghose, "Basic Ship propulsion",2015

- 2. E.A. Stokoe "Reeds Ship construction for marine engineers", Vol. 5,2010
- 3. E.A. Stokoe, "Reeds Naval architecture for the marine engineers", 4th Edition, 2009

REFERENCES BOOKS:

- 1. DJ Eyers and GJ Bruse, "Ship Construction", 7th Edition, 2006.
- 2. KJ Rawson and EC Tupper, "Basic Ship theory I" Vol. 1,5th Edition,2001.

MAPPING OF COS AND POS:

С						PO								PSC)	
0	PO1	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
		0	0	0	0	0	0	0	0	0	0	0	S	S	S	S
		2	3	4	5	6	7	w	9	1	1	1	0	0	0	0
								8		0	1	2	1	2	3	4
1	1	1	1	1	1						1	1		1		1
2	1	1	1											1		1
3	1			1	1				1	1	1		1	1		1
4	1		1	1										1		1
5	1		1	1										1		1
Α	5/5=	2	4	4	2				1	1	2	1	1	5		5
V	1	/	/	/	/				/	/	/	/	/	/		/
g		2	4	4	2				1	1	2	1	1	5		5
		=	=	=	=				=	=	=	=	=	=		=
		1	1	1	1				1	1	1	1	1	1		1

OMV351

MARINE MERCHANT VESSELS

LT P C 3 0 0 3

OBJECTIVES:

At the end of the course, students are expected to acquire

- 1. Knowledge on basics of Hydrostatics
- 2. Familiarization on types of merchant ships
- 3. Knowledge on Shipbuilding Materials
- 4. Knowledge on marine propeller and rudder
- 5. Awareness on governing bodies in shipping industry

UNIT I INTRODUCTION TO HYDROSTATICS

9

Archimedes Principle- Laws of floatation— Meta centre – stability of floating and submerged bodies-Density, relative density - Displacement –Pressure –centre of pressure.

UNIT II TYPES OF SHIP

10

General cargo ship - Refrigerated cargo ships - Container ships - Roll-on Roll-off ships - Oil tankers-Bulk carriers - Liquefied Natural Gas carriers - Liquefied Petroleum Gascarriers - Chemical tankers - Passenger ships

UNIT III SHIPBUILDING MATERIALS

9

Types of Steels used in Shipbuilding - High tensile steels, Corrosion resistant steels, Steel sandwich panels, Steel castings, Steel forgings - Other shipbuilding materials, Aluminium alloys, Aluminium alloys sandwich panels, Fire protection especially for Aluminium Alloys, Fiber Reinforced Composites

UNIT IV MARINE PROPELLER AND RUDDER

Types of rudder, construction of Rudder-Types of Propeller, Propeller material-Cavitations and its effects on propeller

UNIT V Governing Bodies for Shipping Industry

9

Role of IMO (International Maritime Organization), SOLAS (International Convention for the Safety of Life at Sea), MARPOL (International Convention for the Prevention of Pollution from Ships), MLC (Maritime Labour Convention), STCW 2010 (International Convention on Standards of Training, Certification and Watch keeping for Seafarers), Classification societies Administration authorities

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of this course, students would

- 1. Acquire Knowledge on floatation of ships
- 2. Acquire Knowledge on features of various ships
- 3. Acquire Knowledge of Shipbuilding Materials
- 4. Acquire Knowledge to identify the different types of marine propeller and rudder
- 5. Understand the Roles and responsibilities of governing bodies

TEXT BOOKS:

- 1. D.J.Eyres, "Ship Constructions", Seventh Edition, Butter Worth Heinemann Publishing, USA,2015
- 2. Dr.DA Taylor, "Merchant Ship Naval Architecture" I. Mar EST publications, 2006
- 3. EA Stokoe, E.A, "Naval Architecture for Marine Engineers", Vol.4, Reeds Publications, 2000

REFERENCES:

- 1. Kemp & Young "Ship Construction Sketches & Notes", Butter Worth Heinemann Publishing, USA, 2011
- 2. MARPOL Consolidated Edition, Bhandakar Publications, 2018
- 3. SOLAS Consolidated Edition, Bhandakar Publications, 2016

OMV352

ELEMENTS OF MARINE ENGINEERING

LTPC 3003

OBJECTIVES:

At the end of the course, students are expected to

- 1. Understand the role of Marine machinery systems
- 2. Be familiar with Marine propulsion machinery system
- 3. Acquaint with Marine Auxiliary machinery system
- 4. Have acquired basics of Marine Auxiliary boiler system
- 5. Be aware of ship propellers and steering system

UNIT I ELEMENTARY KNOWLEDGE ON MARINE MACHINERY SYSTEMS

2

Marine Engineering Terminologies, Parts of Ship, Introduction to Machinery systems on board ships – Propulsion Machinery system, Electricity Generator system, Steering gear system, Air compressors & Air reservoirs, Fuel oil and Lubricating Oil Purifiers, Marine Boiler systems

UNIT II MARINE PROPULSION MACHINERY SYSTEM

9

Two stroke Large Marine slow speed Diesel Engine – General Construction, Basic knowledge of Air starting and reversing mechanism, Cylinder lubrication oil system, Main lubricating oil system and cooling water system

UNIT III MARINE AUXILIARY MACHINERY SYSTEM

9

Four stroke medium speed Diesel engine – General Construction, Inline, V-type arrangement of engine, Difference between slow speed and medium speed engines – advantages, limitations and applications

UNIT IV MARINE BOILER SYSTEM

Q

Types of Boiler – Difference between Water tube boiler and Fire tube boiler, Need for boiler on board ships, Uses of steam, Advantages of using steam as working medium, Boiler mountings and accessories – importance of mountings, need for accessories

UNIT V SHIP PROPELLERS AND STEERING MECHANISM

9

Importance of Propellor and Steering gear, Types of propellers - Fixed pitch propellers, Controllable pitch propellers, Water jet propellers, Steering gear systems - 2-Ram and 4 Ram steering gear, Electric steering gear

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, students should able to,

- 1. Distinguish the role of various marine machinery systems
- 2. Relate the components of marine propulsion machinery system
- 3. Explain the importance of marine auxiliary machinery system
- 4. Acquire knowledge of marine boiler system
- 5. Understand the importance of ship propellors and steering system

TEXT BOOKS:

- Taylor, "Introduction to Marine engineering", Revised Second Edition, Butterworth Heinemann, London, 2011
- 2. J.K.Dhar, "Basic Marine Engineering", Tenth Edition, G-Maritime Publications, Mumbai, 2011
- 3. K.Ramaraj, "Text book on Marine Engineering", Eswar Press, Chennai, 2018

REFERENCES:

- 1. Alan L.Rowen, "Introduction to Practical Marine Engineering, Volume 1&2, The Institute of Marine Engineers (India), Mumbai, 2006
- 2. A.S.Tambwekar, "Naval Architecture and Ship Construction", The Institute of Marine Engineers (India), Mumbai, 2015

OGI352

GEOGRAPHICAL INFORMATION SYSTEM

L T P C 3 0 0 3

OBJECTIVES:

To impart the knowledge on basic components, data preparation and implementation of Geographical Information System.

UNIT I FUNDAMENTALS OF GIS

9

Introduction to GIS - Basic spatial concepts - Coordinate Systems - GIS and Information Systems - Definitions - History of GIS - Components of a GIS - Hardware, Software, Data, People, Methods - Proprietary and open source Software - Types of data - Spatial, Attribute data- types of attributes - scales/ levels of measurements.

UNIT II SPATIAL DATA MODELS

9

Database Structures – Relational, Object Oriented – Entities – ER diagram - data models - conceptual, logical and physical models - spatial data models – Raster Data Structures – Raster Data Compression - Vector Data Structures - Raster vs Vector Models- TIN and GRID data models.

UNIT III DATA INPUT AND TOPOLOGY

9

Scanner - Raster Data Input – Raster Data File Formats – Georeferencing – Vector Data Input – Digitizer – Datum Projection and reprojection -Coordinate Transformation – Topology - Adjacency, connectivity and containment – Topological Consistency – Non topological file formats - Attribute Data linking – Linking External Databases – GPS Data Integration

UNIT IV DATA QUALITY AND STANDARDS

9

Data quality - Basic aspects - completeness, logical consistency, positional accuracy, temporal accuracy, thematic accuracy and lineage - Metadata - GIS Standards - Interoperability - OGC - Spatial Data Infrastructure

UNIT V DATA MANAGEMENT AND OUTPUT

9

Import/Export – Data Management functions- Raster to Vector and Vector to Raster Conversion - Data Output - Map Compilation – Chart/Graphs – Multimedia – Enterprise Vs. Desktop GIS- distributed GIS.

TOTAL:45 PERIODS

COURSE OUTCOMES:

•On completion of the course, the student is expected to

CO1 Have basic idea about the fundamentals of GIS.

CO2 Understand the types of data models.

CO3 Get knowledge about data input and topology

CO4 Gain knowledge on data quality and standards

CO5 Understand data management functions and data output

TEXTBOOKS:

- 1. Kang Tsung Chang, Introduction to Geographic Information Systems, McGraw Hill Publishing, 2nd Edition, 2011.
- 2. Ian Heywood, Sarah Cornelius, Steve Carver, Srinivasa Raju, "An Introduction Geographical Information Systems, Pearson Education, 2nd Edition, 2007.

REFERENCES:

1. Lo. C. P., Albert K.W. Yeung, Concepts and Techniques of Geographic Information Systems, Prentice-Hall India Publishers, 2006

CO - PO - PSO MAPPING: GEOGRAPHIC INFORMATION SYSTEM

			Cou	rse Outco	ome		
PO	Graduate Attribute	CO1	CO2	CO3	CO4	CO5	Average
PO1	Engineering Knowledge	3	3	3	3	3	3
PO2	Problem Analysis				3	3	3
PO3	Design/Development of Solutions			3	3	3	3
PO4	Conduct Investigations of Complex Problems			3	3	3	3
PO5	Modern Tool Usage		3		3	3	3
PO6	The Engineer and Society						
PO 7	Environment and Sustainability						
PO 8	Ethics						
PO 9	Individual and Team Work						

PO 10	Communication						
PO 11	Project Management						
	and Finance						
PO 12	Life-long Learning						
PSO 1	Knowledge of						3
	Geoinformatics	3	3	3	3	3	
	discipline						
PSO 2	Critical analysis of						3
	Geoinformatics						
	Engineering	3	3	3	3	3	
	problems and						
	innovations						
PSO 3	Conceptualization						3
	and evaluation of	3	3	3	3	3	
	Design solutions						

OAI352 AGRICULTURE ENTREPRENEURSHIP DEVELOPMENT

LTPC 3 0 0 3

9

OBJECTIVES

- To introduce the importance of Agri-business management, its characteristics and principles
- To impart knowledge on the functional areas of Agri-business like Marketing management, Product pricing methods and Market potential assessment.

UNIT I ENTREPRENEURIAL ENVIRONMENT IN INDIAN CONTEXT

Entrepreneur Development(ED): Concept of entrepreneur and entrepreneurship assessing overall business environment in Indian economy- Entrepreneurial and managerial characteristics-Entrepreneurship development programmers (EDP)-Generation incubation and commercialization of ideas and innovations- Motivation and entrepreneurship development- Globalization and the emerging business entrepreneurial environment.

UNIT II AGRIPRNEURSHIP IN GLOBAL ARENA: LEGAL PERSPECTIVE 9

Importance of agribusiness in Indian economy - International trade-WTO agreements- Provisions related to agreements in agricultural and food commodities - Agreements on Agriculture (AOA)-Domestic supply, market access, export subsidies agreements on sanitary and phyto-sanitary (SPS) measures, Trade related intellectual property rights (TRIPS).

UNIT III ENTREPRENEURSHIP MANAGEMENT: FINANCIAL PERSPECTIVE 9

Entrepreneurship - Essence of managerial Knowledge -Management functions- Planning-organizing-Directing-Motivation-ordering-leading-supervision- communication and control-Understanding Financial Aspects of Business - Importance of financial statements-liquidity ratios-leverage ratios, coverage ratios-turnover ratios-Profitability ratios. Agro-based industries-Project-Project cycle-Project appraisal and evaluation techniques-undiscounted measures-Payback period-proceeds per rupee of outlay, Discounted measures-Net Present Value (NPV)-Benefit-Cost Ratio(BCR)-Internal Rate of Return(IRR)-Net benefit investment ratio(N/K ratio)-sensitivity analysis.

UNIT IV ENTREPRENEURIAL OPPORTUNITIES: ECONOMIC GROWTH PERSPECTIVE

Managing an enterprise: Importance of planning, budgeting, monitoring evaluation and follow-up managing competition. Role of ED in economic development of a country- Overview of Indian social, political system and their implications for decision making by individual entrepreneurs- Economic system and its implication for decision making by individual entrepreneurs.

UNIT V ENTREPRENEURIAL PROMOTION MEASURES AND GOVERNMENT SUPPORT

Social responsibility of business. Morals and ethics in enterprise management- SWOT analysis- Government schemes and incentives for promotions of entrepreneurship. Government policy on small and medium enterprises (SMEs)/SSIs/MSME sectors- Venture capital (VC), contract framing (CF) and Joint Venture (JV), public-private

9

TOTAL: 45 PERIODS

partnerships (PPP) - overview of agricultural engineering industry, characteristics of Indian farm machinery industry.

COURSE OUTCOMES

- 1. Judge about agricultural finance, banking and cooperation
- 2. Evaluate basic concepts, principles and functions of financial management
- 3. Improve the skills on basic banking and insurance schemes available to customers
- 4. Analyze various financial data for efficient farm management
- 5. Identify the financial institutions

TEXT BOOKS

- 1. Joseph L. Massie, 1995, "Essentials of Management", prentice Hall of India Pvt limited, New Delhi
- 2. Khanka S, 1999, Entrepreneurial Development, S, Chand and Co, New Delhi
- 3. Mohanty S K, 2007, Fundamentals of Entrepreneurship, Prentice Hall India, New Delhi.

REFERENCES

- 1. Harih S B, Conner U J and Schwab G D, 1981, Management of the Farm Business, Prentice Hall Inc, New Jersey
- 2. Omri Ralins, N.1980, Introduction to Agricultural: Prentice Hall Inc, New Jersey
- 3. Gittenger Price, 1989, Economic Analysis of Agricultural project, John Hopkins University, Press, London.
- 4. Thomas W Zimmer and Norman M Scarborough, 1996, Entrepreneurship, Prentice Hall, New Jersey.
- 5. Mar J Dollinger, 1999, Entrepreneurship strategies and resources, Prentice –Hall, Upper Saddal Rover, New Jersey.

CO-PO MAPPING

PO/PSO		C O 1	C O 2	C O 3	C O 4	C O 5	Overall correlatio n of COs with POs
PO1	Engineering Knowledge	1	2	1	1	1	2
PO2	Problem Analysis	2	1	1	1	2	1
PO3	Design/ Development of Solutions	1	1	1	2	1	2
PO4	Conduct Investigations of Complex Problems	1	1	2	1	1	1
PO5	Modern Tool Usage	2	1	1	1	1	2
PO6	The Engineer and Society	1	2	1	2	1	1
PO7	Environment and sustainability	1	1	2	1	1	1
PO8	Ethics	1	2	1	1	1	1
PO9	Individual and team work:	1	1	1	2	1	1
PO10	Communication	1	1	1	1	2	1
PO11	Project management and finance	1	1	2	1	1	1
PO12	Life-long learning:	1	2	1	1	1	2

PSO1	To make expertise in design and engineering problem solving approach in agriculture with proper knowledge and skill	1	2	1	1	1	1	
PSO2	To enhance students ability to formulate solutions to real-world problems pertaining to sustained agricultural productivity using modern technologies.	1	1	2	1	1	1	
PSO3	To inculcate entrepreneurial skills through strong Industry-Institution linkage.	1	2	1	1	2	1	

OEN352

BIODIVERSITY CONSERVATION

LTPC 3 0 0 3

OBJECTIVE:

The identification of different aspects of biological diversity and conservation techniques.

UNIT I INTRODUCTION

a

Concept of Species, Variation; Introduction to Major Plant Groups; Evolutionary relationships between Plant Groups; Nomenclature and History of plant taxonomy; Systems of Classification and their Application; Study of Plant Groups; Study of Identification Characters; Study of important families of Angiosperms; Plant Diversity Application.

UNIT II INTRODUCTION TO ANIMAL DIVERSITY AND TAXONOMY

9

Principles and Rules of Taxonomy; ICZN Rules, Animal Study Techniques; Concepts of Taxon, Categories, Holotype, Paratype, Topotype etc; Classification of Animal kingdom, Invertebrates, Vertebrates, Evolutionary relationships between Animal Groups.

UNIT III MICROBIAL DIVERSITY

9

Microbes and Earth History, Magnitude, Occurrence and Distribution. Concept of Species, Criteria for Classification, Outline Classification of Microorganisms (Bacteria, Viruses and Protozoa); Criteria for Classification and Identification of Fungi; Chemical and Biochemical Methods of Microbial Diversity Analysis

UNIT IV MEGA DIVERSITY

9

Biodiversity Hot-spots, Floristic and Faunal Regions in India and World; IUCN Red List; Factors affecting Diversity, Impact of Exotic Species and Human Disturbance on Diversity, Dispersal, Diversity-Stability Relationship; Socio- economic Issues of Biodiversity; Sustainable Utilization of Bioresources; National Movements and International Convention/Treaties on Biodiversity.

UNIT V CONSERVATIONS OF BIODIVERSITY

9

In-Situ Conservation-National parks, Wildlife sanctuaries, Biosphere reserves; Ex-situ conservation-Gene bank, Cryopreservation, Tissue culture bank; Long term captive breeding, Botanical gardens, Animal Translocation, Zoological Gardens; Concept of Keystone Species, Endangered Species, Threatened Species, Rare Species, Extinct Species

TOTAL: 45 PERIODS

TEXT BOOKS:

 A textbook of Botany: Angiosperms- Taxonomy, Anatomy, Economic Botany & Embryology. S. Chand, Limited, Pandey, B. P. January 2001

- 2. Principles of Systematic Zoology, Mcgraw-Hill College, Ashlock, P.D., Latest Edition.
- 3. Microbiology, MacGraw Hill Companies Inc, Prescott, L.M., Harley, J.P., and Klein D.A. (2022).
- 4. Microbiology, Pearson Publisher, Gerard J. Tortora, Berdell R. Funke, Christine L.Case, 13th Edition 2019

REFERENCES:

- 1. Ecological Census Technique: A Handbook, Cambridge University Press, Sutherland, W.
- 2. Encyclopedia of Biodiversity, Academic Press, Simonson Asher Levin.

OUTCOMES

Upon successful completion of this course, students will:

CO1: An insight into the structure and function of diversity for ecosystem stability.

CO2: Understand the concept of animal diversity and taxonomy

CO3: Understand socio-economic issues pertaining to biodiversity

CO4: An understanding of biodiversity in community resource management.

CO5: Student can apply fundamental knowledge of biodiversity conservation to solve problems associated with infrastructure development.

CO's-PO's & PSO's MAPPING

CO's						PO's							Р	SO's	
	1	2	3	4	5	6	7	8	9	1	1	1	1	2	3
										0	1	2			
1		2						2		2			2	2	
2		2		2	2	2							3	2	
3				2		2							3	2	3
4	3	2			2			2	2	2	2		3	2	3
5		2	3	2			1					1		2	
Avg.	3	2	3	2	2	2	1	2	2	2	2	1	3	2	3

1.low, 2-medium, 3-high, '-"- no correlation

Note: The average value of this course to be used for program articulation matrix.

OEE353

INTRODUCTION TO CONTROL SYSTEMS

LTPC 3003

OBJECTIVES

- To impart knowledge on various representations of systems.
- To familiarize time response analysis of LTI systems and steady state error.
- To analyze the frequency responses and stability of the systems
- To analyze the stability of linear systems in frequency domain and time domain
- To develop linear models mainly state variable model and transfer function model

UNIT I MATHEMATICAL MODELS OF PHYSICALSYSTEMS

9

Definition & classification of system – terminology & structure of feedback control theory – Analogous systems - Physical system representation by Differential equations – Block diagram reduction–Signal flow graphs.

UNIT II TIME RESPONSE ANALYSIS & ROOTLOCUSTECHNIQUE

9

Standard test signals – Steady state error & error constants – Time Response of I and II order system—Root locus—Rules for sketching root loci.

UNIT III FREQUENCY RESPONSE ANALYSIS

9

Correlation between Time & Frequency response – Polar plots – Bode Plots – Determination of

Transfer Function from Bode plot.

UNIT IV STABILITY CONCEPTS & ANALYSIS

9

Concept of stability – Necessary condition – RH criterion – Relative stability – Nyquist stability criterion — Stability from Bode plot — Relative stability from Nyquist & Bode — Closed loop frequency response.

UNITY STATE VARIABLE ANALYSIS

9

Concept of state – State Variable & State Model – State models for linear & continuous time systems–Solution of state & output equation–controllability & observability.

TOTAL: 45 PERIODS

OUTCOMES:

Ability to

CO1: Design the basic mathematical model of physical System.

CO2: Analyze the time response analysis and techniques.

CO3: Analyze the transfer function from different plots.

CO4: Apply the stability concept in various criterion.

CO5: Assess the state models for linear and continuous Systems.

TEXT BOOKS

- 1. <u>Farid Golnarghi</u>, <u>Benjamin C. Kuo</u>, Automatic Control Systems Paper back McGraw Hill Education, 2018.
- 2. Katsuhiko Ogata, 'Modern Control Engineering', Pearson, 5th Edition2015.
- 3. J. Nagrath and M. Gopal, Control Systems Engineering (Multi Colour Edition), New Age International, 2018.

REFERENCES

- 1. Richard C. Dorf and Robert H. Bishop, Modern Control Systems, Pearson Education, 2010.
- 2. Control System Dynamics" by Robert Clark, Cambridge University Press, 1996 USA.
- 3. John J. D'Azzo, Constantine H. Houpis and Stuart N. Sheldon, Linear Control System AnalysisandDesign, 5th Edition, CRC PRESS, 2003.
- 4. S. Palani, Control System Engineering, McGraw-Hill Education Private Limited, 2009.
- 5. Yaduvir Singh and S.Janardhanan, Modern Control, Cengage Learning, First Impression2010.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	3	3	2	2				
CO2	3	3	2	3	1				
CO3	3	3	3	2	2				
CO4	3	3	3	2	2				
CO2 CO3 CO4 CO5	3	3	3	1	1	·			

COURSE OBJECTIVES:

- 1. To educate on design of signal conditioning circuits for various applications.
- 2. To Introduce signal transmission techniques and their design.
- 3. Study of components used in data acquisition systems interface techniques
- 4. To educate on the components used in distributed control systems
- 5. To introduce the communication buses used in automation industries.

UNIT I INTRODUCTION

9

Automation overview, Requirement of automation systems, Architecture of Industrial Automation system, Introduction of PLC and supervisory control and data acquisition (SCADA). Industrial bus systems: Modbus & Profibus

UNIT II AUTOMATION COMPONENTS

9

9

Sensors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH measurement. Actuators, process control valves, power electronics devices DIAC, TRIAC, power MOSFET and IGBT. Introduction of DC and AC servo drives for motion control.

UNIT III COMPUTER AIDED MEASUREMENT AND CONTROL SYSTEMS

Role of computers in measurement and control, Elements of computer aided measurement and control, man-machine interface, computer aided process control hardware, process related interfaces, Communication and networking, Industrial communication systems, Data transfer techniques, Computer aided process control software, Computer based data acquisition system, Internet of things (IoT) for plant automation.

UNIT IV PROGRAMMABLE LOGIC CONTROLLERS

^

Programmable controllers, Programmable logic controllers, Analog digital input and output modules, PLC programming, Ladder diagram, Sequential flow chart, PLC Communication and networking, PLC selection, PLC Installation, Advantage of using PLC for Industrial automation, Application of PLC to process control industries.

UNIT V DISTRIBUTED CONTROL SYSTEM

9

5

Overview of DCS, DCS software configuration, DCS communication, DCS Supervisory Computer Tasks, DCS integration with PLC and Computers, Features of DCS, Advantages of DCS.

TOTAL:45 PERIODS

SKILL DEVELOPMENT ACTIVITIES (Group Seminar/Mini Project/Assignment/Content Preparation / Quiz/ Surprise Test / Solving GATE questions/ etc)

- 1. Market survey of the recent PLCs and comparison of their features.
- 2. Summarize the PLC standards
- 3. Familiarization of any one programming language (Ladder diagram/ Sequential Function Chart/ Function Block Diagram/ Equivalent open source software)
- 4. Market survey of Industrial Data Networks.

COURSE OUTCOMES:

Students able to

- **CO1** Design a signal conditioning circuits for various application (L3).
- **CO2** Acquire a detail knowledge on data acquisition system interface and DCS system (L2).
- CO3 Understand the basics and Importance of communication buses in applied automation Engineering (L2).
- CO4 Ability to design PLC Programmes by Applying Timer/Counter and Arithmetic and Logic Instructions Studied for Ladder Logic and Function Block.(L3)
- **CO5** Able to develop a PLC logic for a specific application on real world problem. (L5)

TEXT BOOKS:

- 1. S.K.Singh, "Industrial Instrumentation", Tata Mcgraw Hill, 2nd edition companies, 2003.
- 2. C D Johnson, "Process Control Instrumentation Technology", Prentice Hall India,8th Edition, 2006.
- 3. E.A.Parr, Newnes ,NewDelhi, "Industrial Control Handbook",3rd Edition, 2000.

REFERENCES:

- 1. John W. Webb and Ronald A. Reis, "Programmable Logic Controllers: Principles and Applications", 5th Edition, Prentice Hall Inc., New Jersey, 2003.
- 2. Frank D. Petruzella, "Programmable Logic Controllers", 5th Edition, McGraw- Hill, New York, 2016
- 3. Krishna Kant, "Computer Based Industrial Control", 2nd Edition, Prentice Hall, New Delhi, 2011
- 4. Gary Dunning, Thomson Delmar, "Programmable Logic Controller", CeneageLearning, 3 rd Edition, 2005.

List of Open Source Software/ Learning website:

- 1. https://archive.nptel.ac.in/courses/108/105/108105062/
- 2. https://nptel.ac.in/courses/108105063
- 3. https://www.electrical4u.com/industrial-automation/
- 4. https://realpars.com/what-is-industrial-automation/
- 5. https://automationforum.co/what-is-industrial-automation-2/

CO's-PO's & PSO's MAPPING

CO's					PC	O's							PS	O's	
	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1	2	3
CO1	3	2	2	2	1	1	-	1	-	1	-	1	1	-	1
CO2	3	1	1	-	1	_	-	1	-	1	_	-	1	-	1
CO3	3	-	1	-	1	-	-	1	-	1	_	_	1	-	1
CO4	3	3	3	3	1			1		1			1		1
CO5	3	3	3	3	1	1		1		1			1		1
AVg.	3	2	2	2	1	1	-	1	-	1	-	-	1	-	1
		2 5		6											

OCH353

ENERGY TECHNOLOGY

LTPC 3003

UNIT I INTRODUCTION

0003

Units of energy, conversion factors, general classification of energy, world energy resources and energy consumption, Indian energy resources and energy consumption, energy crisis, energy alternatives, Renewable and non-renewable energy sources and their availability. Prospects of Renewable energy sources

UNIT II CONVENTIONAL ENERGY

8

Conventional energy resources, Thermal, hydel and nuclear reactors, thermal, hydel and nuclear power plants, efficiency, merits and demerits of the above power plants, combustion processes, fluidized bed combustion.

UNIT III NON-CONVENTIONAL ENERGY

10

Solar energy, solar thermal systems, flat plate collectors, focusing collectors, solar water heating, solar cooling, solar distillation, solar refrigeration, solar dryers, solar pond, solar thermal power generation, solar energy application in India, energy plantations. Wind energy, types of windmills,

types of wind rotors, Darrieus rotor and Gravian rotor, wind electric power generation, wind power in India, economics of wind farm, ocean wave energy conversion, ocean thermal energy conversion, tidal energy conversion, geothermal energy.

UNIT IV BIOMASS ENERGY

10

Biomass energy resources, thermo-chemical and biochemical methods of biomass conversion, combustion, gasification, pyrolysis, biogas production, ethanol, fuel cells, alkaline fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, solid polymer electrolyte fuel cell, magneto hydrodynamic power generation, energy storage routes like thermal energy storage, chemical, mechanical storage and electrical storage.

UNIT V ENERGY CONSERVATION

9

Energy conservation in chemical process plants, energy audit, energy saving in heat exchangers, distillation columns, dryers, ovens and furnaces and boilers, steam economy in chemical plants, energy conservation.

TOTAL : 45 PERIODS

OUTCOMES:

On completion of the course, the students will be able to

CO1: Students will be able to describe the fundamentals and main characteristics of renewable energy sources and their differences compared to fossil fuels.

CO2: Students will excel as professionals in the various fields of energy engineering

CO3: Compare different renewable energy technologies and choose the most appropriate based on local conditions.

CO4: Explain the technological basis for harnessing renewable energy sources.

CO5: Identify and critically evaluate current developments and emerging trends within the field of renewable energy technologies and to develop in-depth technical understanding of energy problems at an advanced level.

TEXT BOOKS

- 1. Rao, S. and Parulekar, B.B., Energy Technology, Khanna Publishers, 2005.
- 2. Rai, G.D., Non-conventional Energy Sources, Khanna Publishers, New Delhi, 1984.
- 3. Bansal, N.K., Kleeman, M. and Meliss, M., Renewable Energy Sources and Conversion Technology, Tata McGraw Hill, 1990.
- 4. Nagpal, G.R., Power Plant Engineering, Khanna Publishers, 2008.

REFERENCES

- 1. Nejat Vezirog, Alternate Energy Sources, IT, McGraw Hill, New York.
- 2. El. Wakil, Power Plant Technology, Tata McGraw Hill, New York, 2002.
- 3. Sukhatme. S.P., Solar Enery Thermal Collection and Storage, Tata McGraw hill, New Delhi, 1981.

Course articulation matrix

Course	Program Outcomes															
Outcomes	Statements	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P 0 1 0	P 0 1	P O 1 2	P S O 1	P S O 2	P S O 3
CO1	Students will be able to describe the fundamentals and main characteristics of renewable energy sources and their differences compared to fossil fuels.		3	2	3	3	-	-	-	1	1	-	3	1	1	3
CO2	Students will excel as professionals in the various fields of energy engineering	2	3	1	3	3	-	-	-	1	1	-	3	2	1	3

СОЗ	Compare different renewable energy technologies and choose the most appropriate based on local conditions.	2	2	2	3	3	1	1	-	1	1	•	3	2	1	3
CO4	Explain the technological basis for harnessing renewable energy sources.	2	2	1	3	3	1	1	1	1	1	1	3	1	1	3
CO5	Identify and critically evaluate current developments and emerging trends within the field of renewable energy technologies and to develop in-depth technical understanding of energy problems at an advanced level	2	2	1	3	3	1	1	1	1	-	1	3	2	1	3
OVERALL CO			2	1	3	3	2	2	1	1	1	1	3	2	1	3

^{1, 2} and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively

OCH354 SURFACE SCIENCE

LT P C 3 0 0 3

OBJECTIVE:

• To enable the students to analyze properties of a surfaces and correlate them to structure, chemistry, and physics and surface modification technique.

UNIT I SURFACE STRUCTURE AND EXPERIMENTAL PROBES

۵

Relevance of surface science to Chemical and Electrochemical Engineering, Heterogeneous Catalysis and Nanoscience; Surface structure and reconstructions, absorbate structure, Band and Vibrational structure, Importance of UHV techniques, Electronic probes and molecular beams, Scanning probes and diffraction, Qualitative introduction to electronic and vibrational spectroscopy

UNIT II ADSORPTION, DYNAMICS, THERMODYNAMICS AND KINETICS AT SURFACES

9

Interactions at the surface, Physisorption, Chemisorption, Diffusion, dynamics and reactions of atoms/molecules on surfaces, Generic reaction mechanism on surfaces, Adsorption isotherms, Kinetics of adsorption, Use of temperature desorption methods

UNIT III LIQUID INTERFACES

9

Structure and Thermodynamics of liquid-solid interface, Self-assembled monolayers, Electrified interfaces, Charge transfer at the liquid-solid interfaces, Photoelectrochemical processes, Gratzel cells

UNIT IV HETEROGENEOUS CATALYSIS

9

Characterization of heterogeneous catalytic processes, Microscopic kinetics to catalysis, Overview of important heterogeneous catalytic processes: Haber-Bosch, Fishcher-Tropsch and Automotive catalysis, Role of promoters and poisons, Bimetallic surfaces, surface functionalization and clusters in catalysis, Role of Sabatier principle in catalyst design, Rate oscillations and spatiotemporal pattern formation

UNIT V EPITAXIAL GROWTH AND NANO SURFACE-STRUCTURES

9

Origin of surface forces, Role of stress and strain in epitaxial growth, Energetic and growth modes, Nucleation theory, Nonequilibrium growth modes, MBE, CVD and ablation techniques, Catalytic growth of nanotubes, Etching of surfaces, Formation of nanopillars and nanorods and its application in photoelectrochemical processes, Polymer surfaces and biointerfaces.

TOTAL: 45 PERIODS

OUTCOME:

 Upon completion of this course, the students can understand, predict and design surface properties based on surface structure. Students would understand the physics and chemistry behind surface phenomena

TEXT BOOK:

1. K. W. Kolasinski, "Surface Science: Foundations of catalysis and nanoscience" II Edition, John Wiley & Sons, New York, 2008.

REFERENCE:

1. Gabor A. Somorjai and Yimin Li "Introduction to Surface Chemistry and catalysis", II Edition John Wiley & Sons, New York, 2010.

OFD354

FUNDAMENTALS OF FOOD ENGINEERING

LTPC

3003

OBJECTIVES

The course aims to

- acquaint and equip the students with different techniques of measurement of engineering properties.
- make the students understand the nature of food constituents in the design of processing equipment

UNIT I 9

Engineering properties of food materials: physical, thermal, aerodynamic, mechanical, optical and electromagnetic properties.

UNIT II 9

Drying and dehydration: Basic drying theory, heat and mass transfer in drying, drying rate curves, calculation of drying times, dryer efficiencies; classification and selection of dryers; tray, vacuum, osmotic, fluidized bed, pneumatic, rotary, tunnel, trough, bin, belt, microwave, IR, heat pump and freeze dryers; dryers for liquid: Drum or roller dryer, spray dryer and foammat dryers

UNIT III 9

Size reduction: Benefits, classification, determination and designation of the fineness of ground material, sieve/screen analysis, principle and mechanisms of comminution of food, Rittinger's, Kick's and Bond's equations, work index, energy utilization; Size reduction equipment: Principal types, crushers (jaw crushers, gyratory, smooth roll), hammer mills and impactors, attrition mills, buhr mill, tumbling mills, tumbling mills, ultra fine grinders, fluid jet pulverizer, colloid mill, cutting machines (slicing, dicing, shredding, pulping)

UNIT IV

Mixing: theory of solids mixing, criteria of mixer effectiveness and mixing indices, rate of mixing, theory of liquid mixing, power requirement for liquids mixing; Mixing equipment: Mixers for lo.w- or medium-viscosity liquids (paddle agitators, impeller agitators, powder-liquid contacting devices, other mixers), mixers for high viscosity liquids and pastes, mixers for dry powders and particulate solids.

UNIT V 9

Mechanical Separations: Theory, centrifugation, liquid-liquid centrifugation, liquid-solid centrifugation, clarifiers, desludging and decanting machine, Filtration: Theory of filtration, rate of filtration, pressure drop during filtration, applications, constant-rate filtration and constant-pressure filtration, derivation of equation; Filtration equipment; plate and frame filter press, rotary filters, centrifugal filters and air filters, filter aids, Membrane separation: General considerations, materials for membrane construction, ultra-filtration, microfiltration, concentration, polarization, processing variables, membrane fouling, applications of ultra-filtration in food processing, reverse osmosis, mode of operation, and applications; Membrane separation methods, demineralization by electro-dialysis, gel filtration, ion exchange, per-evaporation and osmotic dehydration.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of the course the students will be able to

CO1 understand the importance of food polymers

CO2 understand the effect of various methods of processing on the structure and texture of food materials

CO3 understand the interaction of food constituents with respect to thermal, electrical properties to develop new technologies for processing and preservation.

TEXTBOOKS:

- 1. R.L. Earle. 2004. Unit Operations in Food Processing. The New Zealand Intitute of Food Science & Technology, Nz. Warren L. McCabe, Julian Smith, Peter Harriott. 2004.
- 2. Unit Operations of Chemical Engineering, 7th Ed. McGraw-Hill, Inc., NY, USA. Christie John Geankoplis. 2003.
- 3. Transport Processes and Separation Process Principles (Includes Unit Operations), 4th Ed. Prentice-Hall, NY, USA.
- 4. George D. Saravacos and Athanasios E. Kostaropoulos. 2002. Handbook of Food Processing Equipment. Springer Science+Business Media, New York, USA.
- 5. J. F. Richardson, J. H. Harker and J. R. Backhurst. 2002. Coulson & Richardson's Chemical Engineering, Vol. 2, Particle Technology and Separation Processes, 5th Ed.

OFD355

FOOD SAFETY AND QUALITY REGULATIONS

1 T P C 3 0 0 3

OBJECTIVES:

- To characterize different type of food hazards, physical, chemical and biological in the industry and food service establishments
- To help become skilled in systems for food safety surveillance
- To be aware of the regulatory and statutory bodies in India and the world
- To ensure processed food meets global standards

UNIT I 10

Introduction to food safety and security: Hygienic design of food plants and equipments, Food Contaminants (Microbial, Chemical, Physical), Food Adulteration (Common adulterants), Food Additives (functional role, safety issues), Food Packaging & labeling. Sanitation in warehousing, storage, shipping, receiving, containers and packaging materials. Control of rats, rodents, mice, birds, insects and microbes. Cleaning and Disinfection, ISO 22000 – Importance and Implementation

UNIT II 8

Food quality: Various Quality attributes of food, Instrumental, chemical and microbial Quality control. Sensory evaluation of food and statistical analysis. Water quality and other utilities.

UNIT III 9

Critical Quality control point in different stages of production including raw materials and processing materials. Food Quality and Quality control including the HACCP system. Food inspection and Food Law, Risk assessment – microbial risk assessment, dose response and exposure response modelling, risk management, implementation of food surveillance system to monitor food safety, risk communication

UNIT IV 9

Indian and global regulations: FAO in India, Technical Cooperation programmes, Bio-security in Food and Agriculture, World Health Organization (WHO), World Animal Health Organization (OIE), International Plant Protection Convention (IPPC)

UNIT V 9

Codex Alimentarius Commission - Codex India - Role of Codex Contact point, National Codex contact point (NCCP), National Codex Committee of India - ToR, Functions, Shadow Committees etc.

COURSE OUTCOMES:

CO1 Thorough Knowledge of food hazards, physical, chemical and biological in the industry and food service establishments

CO2 Awareness on regulatory and statutory bodies in India and the world

REFERENCES:

- 1. Handbook of food toxicology by S. S. Deshpande, 2002
- 2. The food safety information handbook by Cynthia A. Robert, 2009
- 3. Nutritional and safety aspects of food processing by Tannenbaum SR, Marcel Dekker Inc., New York 1979
- 4. Microbiological safety of Food by Hobbs BC, 1973
- 5. Food Safety Handbook by Ronald H. Schmidt, Gary E. Rodrick, A John Wiley & Sons Publication, 2003

OPY353 NUTRACEUTICALS L T P C 3 0 0 3

OBJECTIVES:

- To understand the basic concepts of Nutraceuticals and functional food, their chemical nature and methods of extraction.
- To understand the role of Nutraceuticals and functional food in health and disease.

UNIT I INTRODUCTION AND SIGNIFICANCE

6

TOTAL: 45 PERIODS

Introduction to Nutraceuticals and functional foods; importance, history, definition, classification, list of functional foods and their benefits, Phytochemicals, zoochemicals and microbes in food, plants, animals and microbes.

UNIT II PHYTOCHEMICALS AS NUTRACEUTICALS

11

Phytoestrogens in plants; isoflavones; flavonols, polyphenols, tannins, saponins, lignans, lycopene, chitin, caratenoids. Manufacturing practice of selected nutraceuticals such as lycopene, isoflavonoids, glucosamine, phytosterols. Formulation of functional foods containing nutraceuticals - stability, analytical and labelling issues.

UNIT III ASSESSMENT OF ANTIOXIDANT ACTIVITY

11

In vitro and in vivo methods for the assessment of antioxidant activity, Comparison of different *in vitro* methods to evaluate the antioxidant, antioxidant mechanism, Prediction of the antioxidant activity of natural phenolics from electrotopological state indices, Optimising phytochemical release by process

technology; Variation of Antioxidant Activity during technological treatments, new food grade peptidases from plant sources.

UNIT IV ROLE IN HEALTH AND DISEASE

11

The health benefit of - Soy protein, Spirulina, Tea, Olive oil, plant sterols, Broccoli, omega3 fatty acid and eicosanoids. Nutraceuticals and Functional foods in Gastrointestinal disorder, Cancer, CVD, Diabetic Mellitus, HIV and Dental disease; Importance and function of probiotic, prebiotic and synbiotic and their applications, Functional foods and immune competence; role and use in obesity and nervous system disorders.

UNIT V SAFETY ISSUES

6

Health Claims, Adverse effects and toxicity of nutraceuticals, regulations and safety issues International and national.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Bisset, Normal Grainger and Max Wich H "Herbal Drugs and Phytopharmaceuticals", 2nd Edition, CRC, 2001.
- 2. Handbook of Nutraceuticals and Functional Foods: Robert Wildman, CRC, Publications. 2006
- 3. WEBB, PP, Dietary Supplements and Functional Foods Blackwell Publishing Ltd (United Kingdom), 2006
- 4. Ikan, Raphael "Natural Products: A Laboratory Guide", 2nd Edition, Academic Press / Elsevier, 2005.

REFERENCES:

- 1. Asian Functional Foods (Nutraceutical Science and Technology) by John Shi (Editor), Fereidoon Shahidi (Editor), Chi-Tang Ho (Editor), CRC Publications, Taylor & Francis, 2007
- 2. Functional Foods and Nutraceuticals in Cancer Prevention by Ronald Ross Watson (Author), Blackwell Publishing, 2007
- 3. Marketing Nutrition: Soy, Functional Foods, Biotechnology, and Obesity by Brian Wansink.
- 4. Functional foods: Concept to Product: Edited by G R Gibson and C M Williams, Wood head Publ., 2000
- 5. Hanson, James R. "Natural Products: The Secondary Metabolites", Royal Society of Chemistry, 2003.

COURSE OUTCOME - NUTRACEUTICALS

CO 1	acquire knowledge about the Nutraceuticals and functional foods, their classification and benefits.											
CO 2	acquire knowledge of phytochemicals, zoochemicals and microbes in food, plants, animals and microbes											
CO 3	attain the knowledge of the manufacturing practices of selected nutraceutical components and formulation considerations of functional foods.											
CO 4	distinguish the various <i>In vitro</i> and <i>In vivo</i> assessment of Antioxidant activity of compounds from plant sources.											
CO 5	gain information about the health benefits of various functional foods and nutraceuticals in the prevention and treatment of various lifestyle diseases.											
CO 6	Attain the knowledge of the regulatory and safety issues of nutraceuticals at national and international level.											

CO – PO MA	CO – PO MAPPING													
	NUTRACEUTICALS													
Course outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO 1	3											1		
CO 2	3											1		
CO 3	3					2								
CO 4	3													
CO 5	3					2						1		
CO 6	3							2				1		

OTT354

BASICS OF DYEING AND PRINTING

LTPC 3003

OBJECTIVE:

 To enable the students to learn about the basics of Pretreatment, dyeing, printing and machinery in textile processing.

UNIT I INTRODUCTION

9

Impurities present in different fibres, Inspection of grey goods and lot preparation. Shearing,

UNIT II PRE TREATMENT

a

Desizing-Objective of Desizing- types of Desizing- Objective of Scouring- Mechanism of Scouring- Degumming of Silk, Scouring of wool - Bio Scouring. Bleaching -Objective of Bleaching: Bleaching mechanism of Hydrogen Peroxide, Hypo chlorites. Objective of Mercerizing - Physical and Chemical changes of Mercerizing.

UNIT III DYEING

9

Dye - Affinity, Substantively, Reactivity, Exhaustion and Fixation. Classification of dyes. Direct dyes: General properties, principles and method of application on cellulosic materials. Reactive dyes – principles and method of application on cellulosic materials hot brand, cold brand.

UNIT IV PRINTING

9

Definition of printing – Difference between printing and dying- Classification thickeners – Requirements to be good thickener, printing paste Preparation - different styles of printing.

UNIT V MACHINERIES

9

TOTAL: 45 PERIODS

Fabric Processing - winch, jigger and soft flow machines. Beam dyeing machines: Printing -flat bed screen - Rotary screen. Thermo transfer printing machinery. Garment dyeing machines.

OUTCOMES:

Upon completion of the course, the students will be able to Understand the

CO1: Basics of grey fabric

CO2: Basics of pre treatment

CO3: Concept of Dyeing

CO4: Concept of Printing

CO5: Machinery in processing industry

TEXT BOOKS:

- 1. Trotman, E.R., Textile Scouring and Bleaching, Charless Griffins, Com. Ltd., London 1990.
- 2. Shenai V.A. "Technology of Textile Processing Vol. IV" 1998, Sevak Publications, Mumbai.

REFERENCES:

- 1. Trotman E. R., "Dyeing and Chemical Technology of Textile Fibres", Charles Griffin & Co. Ltd., U.K., 1984, ISBN: 0 85264 165 6.
- 2. Dr. N N Mahapatra., "Textile dyeing", Wood head publishing India, 2018
- 3. Mathews Kolanjikombil., "Dyeing of Textile substrates III –Fibres, Yarns and Knitted fabrics", Wood head publishing India, 2021
- 4. Bleaching & Mercerizing BTRA Silver Jubilee Monograph series
- 5. Chakraborty, J.N, "Fundamentals and Practices in colouration of Textiles", Wood head Publishing India, 2009, ISBN-13:978-81-908001-4-3.

Course Articulation Matrix:

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively

NUTRACEUTICALS													
Course outcome	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	Classification of fibres and production of natural fibres												
CO 2	Regenerated and synthetic fibres												
CO 3	Yarn spinning												
CO 4	Weaving												
CO 5	Knitting and nonwoven												
Overall CO													

FT3201 FIBRE SCIENCE L T P C 3 0 0 3

COURSE OBJECTIVES

• To enable the students to learn about the types of fibre and its properties

UNIT I INTRODUCTION TO TEXTILE FIBRES

ć

Definition of various forms of textile fibres - staple fibre, filament, bicomponent fibres. Classification of Natural and Man-made fibres, essential and desirable properties of Fibres. Production and cultivation of Natural Fibers: Cotton, Silk, Wool -Physical and chemical structure of the above fibres.

UNIT II REGENERATED FIBRES

9

Production Sequence of Regenerated Cellulosic fibres: Viscose Rayon, Acetate rayon – High wet modulus fibres: Modal and Lyocel ,Tencel

UNIT III SYNTHEITC FIBRES

9

Production Sequence of Synthetic Fibers: polymer-Polyester, Nylon, Acrylic and polypropylene. Mineral fibres: fibre glass ,carbon .Introduction to spin finishes and texturization

UNIT IV SPECIALITY FIBRES

9

Properties and end uses of high tenacity and high modulus fibres, high temperature and flame retardant fibres. Chemical resistant fibres

UNIT V FUNCTIONAL SPECIALITY FIBRES

9

Properties and end uses : Fibres for medical application – Biodegradable fibres based on PLA ,Super absorbent fibres elastomeric fibres, ultra-fine fibres, electrospun nano fibres, metallic fibres – Gold and Silver coated.

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon completion of this course, the student would be able to

- Understand the process sequence of various fibres
- Understand the properties of various fibres

TEXT BOOKS:

- 1. Morton W. E., and Hearle J. W. S., "Physical Properties of Textile Fibres", The Textile Institute, Washington D.C., 2008, ISBN 978-1-84569-220-95
- 2. Meredith R., and Hearle J. W. S., "Physical Methods of Investigation of Textiles", Wiley Publication, New York, 1989, ISBN: B00JCV6ZWU | ISBN-13:
- 3. Mukhopadhyay S. K., "Advances in Fibre Science", The Textile Institute,1992, ISBN: 1870812379

REFERENCES:

- 1. Meredith R., "Mechanical Properties of Textile Fibres", North Holland, Amsterdam, 1986, ISBN: 1114790699, ISBN-13: 9781114790698
- 2. Hearle J. W. S., Lomas B., and Cooke W. D., "Atlas of Fibre Fracture and Damage to Textiles", The Textile Institute, 2nd Edition, 1998, ISBN: 1855733196.
- 3. Raheel M. (ed.)., "Modern Textile Characterization Methods", Marcel Dekker, 1995, ISBN:0824794737
- 4. Mukhopadhyay. S. K., "The Structure and Properties of Typical Melt Spun Fibres", Textile Progress, Vol. 18, No. 4, Textile Institute, 1989, ISBN: 1870812115
- 5. Hearle J.W.S., "Polymers and Their Properties: Fundamentals of Structures and Mechanics Vol 1", Ellis Horwood, England, 1982, ISBN: 047027302X | ISBN-13: 9780470273029 36

OTT355

GARMENT MANUFACTURING TECHNOLOGY

LTPC 3003

OBJECTIVE:

- To enable the students to understand the basics of pattern making, cutting and sewing.
- To expose the students to various problems & remedies during garment manufacturing

UNIT I PATTERN MAKING, MARKER PLANNING, CUTTING

9

Anthropometry, specification sheet, pattern making – principles, basic pattern set drafting, grading, marker planning, spreading & cutting

UNIT II TYPES OF SEAMS, STITCHES AND FUNCTIONS OF NEEDLES

9

Different types of seams and stitches; single needle lock stitch machine – mechanism and accessories; needle – functions, special needles, needlepoint

UNIT III COMPONENTS AND TRIMS USED IN GARMENT

9

Sewing thread-construction, material, thread size, packages, accessories - labels, linings, interlinings, wadding, lace, braid, elastic, hook and loop fastening, shoulder pads, eyelets and laces, zip fasteners, buttons

GARMENT INSPECTION AND DIMENSIONAL CHANGES UNIT IV

9

Raw material, in process and final inspection; needle cutting; sewability of fabrics; strength properties of apparel; dimensional changes in apparel due to laundering, dry-cleaning, steaming and pressing.

UNIT V GARMENT PRESSING, PACKING AND CARE LABELING

9

Garment pressing – categories and equipment, packing; care 316abelling of apparels

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to Understand

CO1: Pattern making, marker planning, cutting

CO2: Types of seams, stitches and functions of needles

CO3: Components and trims used in garment

CO4: Garment inspection and dimensional changes

CO5: Garment pressing, packing and care 316abelling

TEXT BOOKS:

- 1. Carr H., and Latham B., "The Technology of Clothing Manufacture", Blackwell Science Ltd., Oxford, 1994.
- 2. Gerry Cooklin, "Introduction to Clothing Manufacture" Blackwell Science Ltd., 1995. 64
- Harrison.P.W Garment Dyeing, The Textile Institute Publication, Textile Progress, Vol. 19 No.2,1988.

REFERENCES:

- 1. Winifred Aldrich., "Metric Pattern Cutting", Blackwell Science Ltd., Oxford, 1994
- 2. Peggal H., "The Complete Dress Maker", Marshall Caverdish, London, 1985
- Jai Prakash and Gaur R.K., "Sewing Thread", NITRA, 1994
 Ruth Glock, Grace I. Kunz, "Apparel Manufacturing", Dorling Kindersley Publishing Inc., New Jersey, 1995.
- 5. Pradip V.Mehta, "An Introduction to Quality Control for the Apparel Industry", J.S.N. Internationals, 1992.

						P	0						PSO				
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	
1	1	1	1	-	2	-	1	1	-	2	3	1	2	3	1	3	
2	2	2	1	1	1	-	1	1	-	2	2	1	2	2	1	2	
3	1	1	1	1	1	1	1	1	-	1	2	1	1	3	1	3	
4	2	1	1	1	2	2	2	1	1	2	3	1	2	3	1	3	
5	2	2	1	1	1	1	2	1	-	2	2	1	2	2	1	2	
Avg	1 6	1 2	1	0 8	1 4	0 8	1 4	1	0 . 2	1 8	2 4	1	1 8	2 6	1	2 6	
	Low (1););	High (3)		•		•		

OBJECTIVES:

- To educate about the health hazards and the safety measures to be followed in the industrial environment.
- Describe industrial legislations (Factories Acts, Workmen's Compensation and other laws)
 enacted for the protection of employees health at work settings
- Describe methods of prevention and control of Occupational Health diseases, accidents / emergencies and other hazards

UNIT I INTRODUCTION

0

Need for developing Environment, Health and Safety systems in work places - Accident Case Studies - Status and relationship of Acts - Regulations and Codes of Practice - Role of trade union safety representatives. International initiatives - Ergonomics and work place.

UNIT II OCCUPATIONAL HEALTH AND HYGIENE

9

Definition of the term occupational health and hygiene - Categories of health hazards - Exposure pathways and human responses to hazardous and toxic substances - Advantages and limitations of environmental monitoring and occupational exposure limits - Hierarchy of control measures for occupational health risks - Role of personal protective equipment and the selection criteria - Effects on humans - control methods and reduction strategies for noise, radiation and excessive stress.

UNIT III WORKPLACE SAFETY AND SAFETY SYSTEMS

9

Features of Satisfactory and Safe design of work premises – good housekeeping - lighting and colour, Ventilation and Heat Control – Electrical Safety – Fire Safety – Safe Systems of work for manual handling operations – Machine guarding – Working at different levels – Process and System Safety.

UNIT IV HAZARDS AND RISK MANAGEMENT

9

Safety appraisal - analysis and control techniques – plant safety inspection – Accident investigation - Analysis and Reporting – Hazard and Risk Management Techniques – major accident hazard control – Onsite and Offsite emergency Plans.

UNIT V ENVIRONMENTAL HEALTH AND SAFETY MANAGEMENT

9

TOTAL: 45 PERIODS

Concept of Environmental Health and Safety Management – Elements of Environmental Health and Safety Management Policy and methods of its effective implementation and review – Elements of Management Principles – Education and Training – Employee Participation.

OUTCOMES:

After completion of this course, the student is expected to be able to:

- Describe, with example, the common work-related diseases and accidents in occupational setting
- Name essential members of the Occupational Health team
- What roles can a community health practitioners play in an Occupational setting to ensure the protection, promotion and maintenance of the health of the employee

TOTAL: 45 PERIODS

OBJECTIVES:

• To impart to the student basic knowledge on fluid mechanics, mechanical operations, heat transfer operations and mass transfer operations.

UNIT I FLUID MECHANICS CONCEPTS

Fluid definition and classification of fluids, types of fluids, Rheological behaviour of fluids & Newton's Law of viscosity. Fluid statics-Pascal's law, Hydrostatic equilibrium, Barometric equation and pressure measurement(problems), Basic equations of fluid flow - Continuity equation, Euler's equation and Bernoulli equation; Types of flow - laminar and turbulent; Reynolds experiment; Flow through circular and non-circular conduits - Hagen Poiseuille equation (no derivation). Flow through stagnant fluids – theory of Settling and Sedimentation – Equipment (cyclones, thickeners) Conceptual numericals.

UNIT II FLOW MEASUREMENTS & MECHANICAL OPERATIONS

Different types of flow measuring devices (Orifice meter, Venturimeter, Rotameter) with derivations, flow measurements –. Pumps – types of pumps (Centrifugal & Reciprocating pumps), Energy calculations and characteristics of pumps. Size reduction—characteristics of comminute products, sieve analysis, Properties and handling of particulate solids – characterization of solid particles, average particle size, screen analysis- Conceptual numerical of differential and cumulative analysis. Size reduction, crushing laws, working principle of ball mill. Filtration & types, filtration equipments (plate and frame, rotary drum). Conceptual numericals.

UNIT III CONDUCTIVE & CONVECTIVE HEAT TRANSFER

Modes of heat transfer; Conduction – steady state heat conduction through unilayer and multilayer walls, cylinders; Insulation, critical thickness of insulation. Convection- Forced and Natural convection, principles of heat transfer co-efficient, log mean temperature difference, individual and overall heat transfer co-efficient, fouling factor; Condensation – film wise and drop wise (no derivation). Heat transfer equipments – double pipe heat exchanger, shell and tube heat exchanger (with working principle and construction with applications).

UNIT IV BASICS OF MASS TRANSFER

Diffusion-Fick's law of diffusion. Types of diffusion. Steady state molecular diffusion in fluids at rest and laminar flow (stagnant / unidirection and bi direction). Measurement of diffusivity, Mass transfer coefficients and their correlations. Conceptual numerical.

UNIT V MASS TRANSFER OPERATIONS

Basic concepts of Liquid-liquid extraction – equilibrium, stage type extractors (belt extraction and basket extraction). Distillation – Methods of distillation, distillation of binary mixtures using McCabe Thiele method. Drying-drying operations, batch and continuous drying. Conceptual numerical.

COURSE OUTCOMES:

At the end of the course the student will be able to:

- State and describe the nature and properties of the fluids.
- Study the different flow measuring instruments, the principles of various size reductions, conveying equipment's, sedimentation and mixing tanks.
- Comprehend the laws governing the heat and mass transfer operations to solve the problems.
- Design the heat transfer equipment suitable for specific requirement.

TEXT BOOKS

- 1. Unit operations in Chemical Engineering Warren L. McCabe, Julian C. Smith & Peter Harriot McGraw-Hill Education (India) Edition 2014
- 2. Fluid Mechanics K L Kumar S Chand & Company Ltd 2008
- 3. Introduction to Chemical Engineering Badger W.I. and Banchero, J.T., Tata McGraw Hill New York 1997

REFERENCES

- 1. Principles of Unit Operations Alan S Foust, L.A. Wenzel, C.W. Clump, L. Maus, and L.B. Anderson John Wiley & Sons 2nd edition 2008
- 2. Unit Operations of Chemical Engineering, Vol I &II Chattopadhyaya Khanna Publishers, Delhi-6 1996
- 3. Heat Transfer J P Holman McGraw Hill International Ed

OPT352

PLASTIC MATERIALS FOR ENGINEERS

LTPC 3003

COURSE OBJECTIVES

- Understand the advantages, disadvantages and general classification of plastic materials
- To know the manufacturing, sources, and applications of engineering thermoplastics
- Understand the basics as well as the advanced applications of various plastic materials in the industry
- To understand the preparation methods of thermosetting materials
- Select suitable specialty plastics for different end applications

UNIT I INTRODUCTION TO PLASTIC MATERIALS

9

Introduction to Plastics – Brief history of plastics, advantages and disadvantages, thermoplastic and thermosetting behavior, amorphous polymers, crystalline polymers and cross-linked structures. General purpose thermoplastics/ Commodity plastics: manufacture, structure, properties and applications of polyethylene (PE), cross-linked PE, chlorinated PE, polypropylene, polyvinyl chloride-compounding, formulation, polypropylene (PP)

UNIT II ENGINEERING THERMOPLASTICS AND APPLICATIONS

9

Engineering thermoplastics – Aliphatic polyamides: structure, properties, manufacture and applications of Nylon 6, Nylon 66. Polyesters: manufacture, structure, properties and uses of PET, PBT. Manufacture, structure, properties and uses of Polycarbonates, acetal resins, polyimides, PMMA, polyphenylene oxide, thermoplastic polyurethane (PU)

UNIT III THERMOSETTING PLASTICS

a

Thermosetting Plastics – Manufacture, curing, moulding powder, laminates, properties and uses of phenol formaldehyde resins, urea formaldehyde, melamine formaldehyde, unsaturated polyester resin, epoxy resin, silicone resins, polyurethane resins.

UNIT IV MISCELLANEOUS PLASTICS FOR END APPLICATIONS

9

Miscellaneous plastics- Manufacture, properties and uses of polystyrene, HIPS, ABS, SAN, poly(tetrafluoroethylene) (PTFE), TFE and copolymers, PVDF, PVA, poly (vinyl acetate), poly (vinyl carbazole), cellulose acetate, PEEK, High energy absorbing polymers, super absorbent polymers- their synthesis, properties and applications

UNIT V PLASTICS MATERIALS FOR BIOMEDICAL APPLICATIONS

9

Sources, raw materials, methods of manufacturing, properties and applications of bio-based polymers-poly lactic acid (PLA), poly hydroxy alkanoates (PHA), PBAT, bioplastics- bio-PE, bio-PET, polymers for biomedical applications

TOTAL: 45 PERIODS

COURSE OUTCOMES

- To study the importance, advantages and classification of plastic materials
- Summarize the raw materials, sources, production, properties and applications of various engineering thermoplastics
- To understand the application of polyamides, polyesters and other engineering thermoplastics, thermosetting resins
- Know the manufacture, properties and uses of thermosetting resins based onpolyester, epoxy, silicone and PU
- To understand the engineering applications of various polymers in miscellaneous areas and applications of different biopolymers

REFERENCES

- 1. Marianne Gilbert (Ed.), Brydson's Plastics Materials, 8th Edn., Elsevier (2017).
- 2. J.A.Brydson, Plastics Materials, 7th Edn., Butterworth Heinemann (1999).
- 3. Manas Chanda, Salil K. Roy, Plastics Technology Handbook, 4th Edn., CRC press (2006).
- 4. A. Brent Strong, Plastics: Materials and Processing, 3rd Edn., Pearson Prentice Hall (2006).
- 5. Olagoke Olabisi, Kolapo Adewale (Eds.), Handbook of Thermoplastics 2nd Edn., CRC press(2016).
- 6. Charles A. Harper, Modern Plastics Handbook, McGraw-Hill, New York, 1999.
- 7. H. Dominighaus, Plastics for Engineers, Hanser Publishers, Munich, 1988.

OPT353

PROPERTIES AND TESTING OF PLASTICS

LTPC 3003

COURSE OBJECTIVES

- To understand the relevance of standards and specifications as well as the specimen preparation for polymer testing.
- To study the mechanical properties and testing of polymer materials and their structural property relationships.
- To understand the thermal properties of polymers and their testing methods.
- To gain knowledge on the electrical and optical properties of polymers and their testing methods
- To study about the environmental effects and prevent polymer degradation.

UNIT 1 INTRODUCTION TO CHARACTERIZATION AND TESTING OF POLYMERS

Introduction- Standard organizations: BIS, ASTM, ISO, BS, DIN etc. Standards and specifications. Importance of standards in the quality control of polymers and polymer products. Preparation of test pieces, conditioning and test atmospheres. Tests on elastomers: processability parameters of rubbers – plasticity, Mooney viscosity, scorch time, cure time, cure rate index, Processability tests carried out on thermoplastics and thermosets: MFI, cup flow index, gel time, bulk density, bulk factor.

UNIT 2 MECHANICAL PROPERTIES

9

Mechanical properties: Tensile, compression, flexural, shear, tear strength, hardness, impact strength, resilience, abrasion resistance, creep and stress relaxation, compression set, dynamic fatigue, ageing properties, Basic concepts of stress and strain, short term tests: Viscoelastic behavior (simple models: Kelvin model for creep and stress relaxation, Maxwell-Voigt model, strain recovery and dynamic response), Effect of structure and composition on mechanical properties, Behavior of reinforced polymers

UNIT 3 THERMAL RHEOLOGICAL PROPERTIES

9

Thermal properties: Transition temperatures, specific heat, thermal conductivity, co-efficient of thermal expansion, heat deflection temperature, Vicat softening point, shrinkage, brittleness temperature,

thermal stability and flammability. Product testing: Plastic films, sheeting, pipes, laminates, foams, containers, cables and tubes.

UNIT 4 ELECTRICAL AND OPTICAL PROPERTIES

9

Electrical properties: volume and surface resistivity, dielectric strength, dielectric constant and power factor, arc resistance, tracking resistance, dielectric behavior of polymers (dielectric co-efficient, dielectric polarization), dissipation factor and its importance. Optical properties: transparency, refractive index, haze, gloss, clarity, birefringence.

UNIT 5 ENVIRONMENTAL AND CHEMICAL RESISTANCE

9

Environmental stress crack resistance (ESCR), water absorption, weathering, aging, ozone resistance, permeability and adhesion. Tests for chemical resistance. Acids, alkalies, Flammability tests- oxygen index test.

TOTAL HOURS: 45

COURSE OUTCOMES

- Understand the relevance of standards and specifications.
- Summarize the various test methods for evaluating the mechanical properties of the polymers.
- To know the thermal, electrical & optical properties of polymers.
- Identify various techniques used for characterizing polymers.
- Distinguish the processability tests used for thermoplastics, thermosets and elastomers.

REFERENCES

- 1. F.Majewska, H.Zowall, Handbook of analysis of synthetic polymers and plastics, Ellis Horwood Limited Publisher 1977.
- 2. J.F.Rabek, Experimental Methods in Polymer Chemistry, John Wiley and Sons 1980.
- 3. R.P.Brown, Plastic test methods, 2nd Edn., Harlond, Longman Scientific, 1981.
- 4. A. B. Mathur, I. S. Bharadwaj, Testing and Evaluation of Plastcis, Allied Publishers Pvt. Ltd., New Delhi, 2003.
- 5. Vishu Shah, Handbook of Plastic Testing Technology, 3rd Edn., John Wiley & Sons 2007.
- 6. S. K. Nayak, S. N. Yadav, S. Mohanty, Fundamentals of Plastic Testing, Springer, 2010.

OEC353 VLSI DESIGN L T P C 3 0 0 3

OBJECTIVES:

- Understand the fundamentals of IC technology components and their characteristics.
- Understand combinational logic circuits and design principles.
- Understand sequential logic circuits and clocking strategies.
- Understand Interconnects and Memory Architecture.
- Understand the design of arithmetic building blocks

UNIT I MOS TRANSISTOR PRINCIPLES

9

MOS logic families (NMOS and CMOS), Ideal and Non Ideal IV Characteristics, CMOS devices. MOS(FET) Transistor DC transfer Characteristics, small signal analysis of MOSFET.

UNIT II COMBINATIONAL LOGIC CIRCUITS

9

Propagation Delays, stick diagram, Layout diagrams, Examples of combinational logic design, Elmore's constant, Static Logic Gates, Dynamic Logic Gates, Pass Transistor Logic, Power Dissipation.

UNIT III SEQUENTIAL LOGIC CIRCUITS AND CLOCKING STRATEGIES

9

Static Latches and Registers, Dynamic Latches and Registers, Pipelines, Timing classification of Digital Systems, Synchronous Design, Self-Timed Circuit Design.

UNIT IV INTERCONNECT, MEMORY ARCHITECTURE

9

Interconnect Parameters – Capacitance, Resistance, and Inductance, Logic Implementation using Programmable Devices (ROM, PLA, FPGA), Memory Architecture and Building Blocks.

UNIT V DESIGN OF ARITHMETIC BUILDING BLOCKS

9

Arithmetic Building Blocks: Data Paths, Adders-Ripple Carry Adder, Carry-Bypass Adder, Carry Select Adder, Carry-Look Ahead Adder, Multipliers, Barrel Shifter, power and speed tradeoffs.

TOTAL: 45 PERIODS

OUTCOMES:

Upon successful completion of the course the student will be able to

CO1: Understand the working principle and characteristics of MOSFET

CO2: Design Combinational Logic Circuits

CO3: Design Sequential Logic Circuits and Clocking systems

CO4: Understand Memory architecture and interconnects

CO5: Design of arithmetic building blocks.

TEXT BOOKS

- 1. Jan D Rabaey, Anantha Chandrakasan, "Digital Integrated Circuits: A Design Perspective", PHI, 2016.(Units II, III IV and V).
- 2. Neil H E Weste, Kamran Eshranghian, "Principles of CMOS VLSI Design: A System Perspective," Addison Wesley, 2009.(Units I).

REFERENCES

- 1. D.A. Hodges and H.G. Jackson, Analysis and Design of Digital Integrated Circuits, International Student Edition, McGraw Hill 1983
- 2. P. Rashinkar, Paterson and L. Singh, "System-on-a-Chip Verification-Methodology and Techniques", Kluwer Academic Publishers, 2001
- 3. Samiha Mourad and Yervant Zorian, "Principles of Testing Electronic Systems", Wiley 2000
- 4. M. Bushnell and V. D. Agarwal, "Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits", Kluwer Academic Publishers, 2000

5.

С	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
1	3	3	2	2	1	3	-	-	-	-	2	3	3	3	3
2	3	3	2	2	1	-	-	-	-	-	-	2	3	3	3
3	3	-	3	2	1	2	-	-	-	-	3	2	3	2	3
4	3	3	2	2	2	-	-	-	-	-	-	1	3	3	2
5	2	-	3	2	2	1	-	-	-	-	1	1	3	2	2
С	3	3	2	2	1	2	-	-	-	-	2	2	3	3	3

OBJECTIVES:

The student should be made to:

- To know the hardware requirement of wearable systems
- To understand the communication and security aspects in the wearable devices
- To know the applications of wearable devices in the field of medicine

UNIT I INTRODUCTION TO WEARABLE SYSTEMS AND SENSORS 9

Wearable Systems- Introduction, Need for Wearable Systems, Drawbacks of Conventional Systems for Wearable Monitoring, Applications of Wearable Systems, Types of Wearable Systems, Components of wearable Systems. Sensors for wearable systems-Inertia movement sensors, Respiration activity sensor, Impedance plethysmography, Wearable ground reaction force sensor.

UNIT II SIGNAL PROCESSING AND ENERGY HARVESTING FOR WEARABLE DEVICES

)

Wearability issues -physical shape and placement of sensor, Technical challenges - sensor design, signal acquisition, sampling frequency for reduced energy consumption, Rejection of irrelevant information. Power Requirements- Solar cell, Vibration based, Thermal based, Human body as a heat source for power generation, Hybrid thermoelectric photovoltaic energy harvests, Thermopiles.

UNIT III WIRELESS HEALTH SYSTEMS

a

Need for wireless monitoring, Definition of Body area network, BAN and Healthcare, Technical Challenges- System security and reliability, BAN Architecture – Introduction, Wireless communication Techniques.

UNIT IV SMART TEXTILE

۵

Introduction to smart textile- Passive smart textile, active smart textile. Fabrication Techniques-Conductive Fibres, Treated Conductive Fibres, Conductive Fabrics, Conductive Inks.Case study-smart fabric for monitoring biological parameters - ECG, respiration.

UNIT V APPLICATIONS OF WEARABLE SYSTEMS

9

Medical Diagnostics, Medical Monitoring-Patients with chronic disease, Hospital patients, Elderly patients, neural recording, Gait analysis, Sports Medicine.

OUTCOMES:

On successful completion of this course, the student will be able to

CO1: Describe the concepts of wearable system.

CO2: Explain the energy harvestings in wearable device.

CO3: Use the concepts of BAN in health care.

CO4: Illustrate the concept of smart textile

CO5: Compare the various wearable devices in healthcare system

TOTAL PERIODS:45

TEXT BOOKS

- 1. Annalisa Bonfiglo and Danilo De Rossi, Wearable Monitoring Systems, Springer, 2011
- 2. Zhang and Yuan-Ting, Wearable Medical Sensors and Systems, Springer, 2013
- **3.** Edward Sazonov and Micheal R Neuman, Wearable Sensors: Fundamentals, Implementation and Applications. Elsevier. 2014
- **4.** Mehmet R. Yuce and JamilY.Khan, Wireless Body Area Networks Technology, Implementation applications, Pan Stanford Publishing Pte.Ltd, Singapore, 2012

REFERENCES

- 1. Sandeep K.S, Gupta, Tridib Mukherjee and Krishna Kumar Venkatasubramanian, Body Area Networks Safety, Security, and Sustainability, Cambridge University Press, 2013.
- 2. Guang-Zhong Yang, Body Sensor Networks, Springer, 2006.

CO's-PO's & PSO's MAPPING

						PO	's						PSO's		
CO's	1	2	3	4	5	6	7	8	9	1	1	1 2	1	2	3
1	3	2	1	1	2			1					1		1
2	3	2	1	1	2			1					1		1
3	3	2	1	1	2			1					1		1
4	3	2	1	1	2			1					1		1
5	3	2	1	1	2			1					1		1
ΑV															
a.															

CBM356

MEDICAL INFORMATICS

LTPC 30 03

PREAMBLE:

- 1. To study the applications of information technology in health care management.
- 2. This course provides knowledge on resources, devices, and methods required to optimize the acquisition, storage, retrieval, and use of information in health and biomedicine.

UNIT I INTRODUCTION TO MEDICAL INFORMATICS

9

Introduction - Structure of Medical Informatics -Internet and Medicine -Security issues, Computer based medical information retrieval, Hospital management and information system, Functional capabilities of a computerized HIS, Health Informatics - Medical Informatics, Bioinformatics

UNIT II COMPUTERS IN CLINICAL LABORATORY AND MEDICAL IMAGING 9

Automated clinical laboratories-Automated methods in hematology, cytology and histology, Intelligent Laboratory InformationSystem - Computer assisted medical imaging- nuclear medicine,ultrasound imaging, computed X-ray tomography, Radiation therapy and planning, Nuclear Magnetic Resonance.

UNIT III COMPUTERISED PATIENT RECORD

g

Introduction - conventional patient record, Components and functionality of CPR, Development tools, Intranet, CPR in Radiology- Application server provider, Clinical information system, Computerized prescriptions for patients.

UNIT IV COMPUTER ASSISTED MEDICAL DECISION-MAKING

9

Neuro computers and Artificial Neural Networks application, Expert system-General model of CMD, Computer-assisted decision support system-production rule system cognitive model, semantic networks, decisions analysis inclinical medicine-computers in the care of critically ill patients, Computer aids for the handicapped.

UNIT V RECENT TRENDS IN MEDICAL INFORMATICS

9

TOTAL: 45 PERIODS

Virtual reality applications in medicine, Virtual endoscopy, Computer assisted surgery, Surgical simulation, Telemedicine - Tele surgery, Computer assisted patient education and health- Medical education and healthcare information, computer assisted instruction in medicine.

Course Outcomes:

Upon completion of the course, students will be able to:

- 1. Explain the structure and functional capabilities of Hospital Information System.
- 2. Describe the need of computers in medical imaging and automated clinical laboratory.

- 3. Articulate the functioning of information storage and retrieval in computerized patient record system.
- 4. Apply the suitable decision support system for automated clinical diagnosis.
- 5. Discuss the application of virtual reality and telehealth technology in medical industry.

TEXT BOOKS:

- 1. Mohan Bansal, "Medical informatics", Tata McGraw Hill Publishing Ltd, 2003.
- 2. R.D.Lele, "Computers in medicine progress in medical informatics", Tata Mcgraw Hill, 2005

REFERENCES:

1. Kathryn J. Hannah, Marion J Ball, "Health Informatics", 3rd Edition, Springer, 2006.

CO's-PO's & PSO's MAPPING

CO		PO's														
's	1	2	3	4	5	6	7	8	9	1	1	1	1	2	3	
										0	1	2				
1	3	2	1	1	2			1					1	1	1	
2	3	2	1	1	2			1					1	1	1	
3	3	2	1	1	2			1					1	1	1	
4	3	2	1	1	2			1					1	1	1	
5	3	2	1	1	2			1					1	1	1	
ΑV																
g.																

OBT355 BIOTECHNOLOGY FOR WASTE MANAGEMENT

LTPC 3 0 0 3

UNIT I BIOLOGICAL TREATMENT PROCESS

9

Fundamentals of biological process - Anaerobic process - Pretreatment methods in anaerobic process - Aerobic process, Anoxic process, Aerobic and anaerobic digestion of organic wastes - Factors affecting process efficiency - Solid state fermentation - Submerged fermentation - Batch and continous fermentation

UNIT II WASTE BIOMASS AND ITS VALUE ADDITION

9

Types of waste biomass – Solid waste management - Nature of biomass feedstock – Biobased economy/process – Value addition of waste biomass – Biotransformation of biomass – Biotransformation of marine processing wastes – Direct extraction of biochemicals from biomass – Plant biomass for industrial application

UNIT III BIOCONVERSION OF WASTES TO ENERGY

9

Perspective of biofuels from wastes - Bioethanol production - Biohydrogen Production - dark and photofermentative process - Biobutanol production - Biogas and Biomethane production - Single stage anaerobic digestion, Two stage anaerobic digestion - Biodiesel production - Enzymatic hydrolysis technologies

UNIT IV CHEMICALS AND ENZYME PRODUCTION FROM WASTES

9

Production of lactic acid, succinic acid, citric acid – Biopolymer synthesis – Production of Amylases - Lignocellulolytic enzymes - Pectinolytic enzymes - Proteases – Lipases

UNIT V BIOCOMPOSTING OF ORGANIC WASTES

9

Overview of composting process - Benefitis of composting, Role of microorganisms in composting - Factors affecting the composting process - Waste Materials for Composting, Fundamentals of composting process - Composting technologies, Composting systems - Nonreactor Composting, Reactor composting - Compost Quality

TOTAL: 45 PERIODS

COURSE OUTCOMES

After completion of this course, the students should be able

- 1. To learn the various methods biological treatment
- 2. To know the details of waste biomass and its value addition
- 3. To develop the bioconversion processes to convert wastes to energy
- 4. To synthesize the chemicals and enzyme from wastes
- 5. To produce the biocompost from wastes
- 6. To apply the theoretical knowledge for the development of value added products

TEXT BOOKS

- 1. Antoine P. T., (2017) "Biofuels from Food Waste Applications of Saccharification Using Fungal Solid State Fermentation", CRC press
- 2. Joseph C A., (2019) "Anaerobic Waste-Wastewater Treatment and Biogas Plants-A Practical Handbook", CRC Press,

REFERENCE BOOKS

- 1. Palmiro P. and Oscar F.D'Urso, (2016) 'Biotransformation of Agricultural Waste and By-Products', The Food, Feed, Fibre, Fuel (4F) Economy, Elsevier
- 2. Kaur Brar S., Gurpreet Singh D. and Carlos R.S., (Eds), (2014) Biotransformation of Waste Biomass into High Value Biochemicals', Springer.
- 3. Keikhosro K, Editor, (2015) 'Lignocellulose-Based Bioproducts', Springer.
- 4. John P, (2014) 'Waste Management Practices-Municipal, Hazardous, and Industrial', Second Edition, CRC Press, 2014

OBT356

LIFESTYLE DISEASES

LTPC 3 0 0 3

UNIT I INTRODUCTION

9

Lifestyle diseases – Definition; Risk factors – Eating, smoking, drinking, stress, physical activity, illicit drug use; Obesity, diabetes, cardiovascular diseases, respiratory diseases, cancer; Prevention – Diet and exercise.

UNIT II CANCER

9

Types - Lung cancer, Mouth cancer, Skin cancer, Cervical cancer, Carcinoma oesophagus; Causes Tobacco usage, Diagnosis – Biomarkers, Treatment

UNIT III CARDIOVASCULAR DISEASES

9

Coronoary atherosclerosis – Coronary artery disease; Causes -Fat and lipids, Alcohol abuse - Diagnosis - Electrocardiograph, echocardiograph, Treatment, Exercise and Cardiac rehabilitation

UNIT IV DIABETES AND OBESITY

9

Types of Diabetes mellitus; Blood glucose regulation; Complications of diabetes – Paediatric and adolescent obesity – Weight control and BMI

UNIT V RESPIRATORY DISEASES

۵

Chronic lung disease, Asthma, COPD; Causes - Breathing pattern (Nasal vs mouth), Smoking - Diagnosis - Pulmonary function testing

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. R.Kumar&Meenal Kumar, "Guide to Prevention of Lifestyle Diseases", Deep & Deep Publications, 2003
- 2. Gary Eggar et al, "Lifestyle Medicine", 3rd Edition, Academic Press, 2017

REFERENCES:

- 1. James M.R, "Lifestyle Medicine", 2nd Edition, CRC Press, 2013
- 2. Akira Miyazaki et al, "New Frontiers in Lifestyle-Related Disease", Springer, 2008

OBT357

BIOTECHNOLOGY IN HEALTH CARE

LTPC 3 0 0 3

COURSE OBJECTIVES

The aim of this course is to

- 1. Create higher standard of knowledge on healthcare system and services
- 2. Prioritize advanced technologies for the diagnosis and treatment of various diseases

UNIT I PUBLIC HEALTH

9

Definition and Concept of Public Health, Historical aspects of Public Health, Changing Concepts of Public Health, Public Health versus Medical Care, Unique Features of Public Health, Determinants of Health (Social, Economic, Cultural, Environmental, Education, Genetics, Food and Nutrition). Indicators of health, Burden of disease, Role of different disciplines in Public Health.

UNIT II CLINICAL DISEASES

9

Communicable diseases: Chickenpox / Shingles, COVID-19, Tuberculosis, Hepatitis B, Hepatitis C, HIV / AIDS, Influenza, Swine flu. Non Communicable diseases: Diabetes mellitus, atherosclerosis, fatty liver, Obesity, Cancer

UNIT III VACCINOLOGY

9

History of Vaccinology, conventional approaches to vaccine development, live attenuated and killed vaccines, adjuvants, quality control, preservation and monitoring of microorganisms in seed lot systems. Instruments related to monitoring of temperature, sterilization, environment.

UNIT IV OUTPATIENT & IN PATIENT SERVICES

g

Radiotherapy, Nuclear medicine, surgical units, OT Medical units, G & Obs. units Pediatric, neonatal units, Critical care units, Physical medicine & Rehabilitation, Neurology, Gastroenterology, Endoscopy, Pulmonology, Cardiology.

UNIT V BASICS OF IMAGING MODALITIES

9

Diagnostic X-rays - Computer tomography - MRI - Ultrasonography - Endoscopy - Thermography - Different types of biotelemetry systems.

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Joseph J.carr and John M. Brown, Introduction to Biomedical Equipment Technology, John Wiley and sons, New York, 4th Edition, 2012.
- 2. Thomas M. Devlin.Textbook of Biochemistry with clinical correlations. Wiley Liss Publishers
- 3. The Vaccine Book (2nd Ed.), Rafi Ahmed, Roy M. Anderson et. al.Editor(s): Barry R. Bloom, PaulHenri Lambert, Academic Press, 2016, Pages xxi-xxiv.

REFERENCE BOOKS

- 1. Suh, Sang, Gurupur, Varadraj P., Tanik, Murat M., Health Care Systems, Technology and Techniques, Springer, 1st Edition, 2011
- 2. Burtis & Ashwood W.B. Tietz Textbook of Clinical chemistry. Saunders Company
- 3. Levine, M. M. (2004). New Generation Vaccines. New York: M. Dekker

VERTICAL 1: FINTECH AND BLOCK CHAIN

CMG331 FINANCIAL MANAGEMENT

L T PC 3 0 0 3

LEARNING OBJECTIVES

- 1.To acquire the knowledge of the decision areas in finance.
- 2. To learn the various sources of Finance
- 3. To describe about capital budgeting and cost of capital.
- 4. To discuss on how to construct a robust capital structure and dividend policy
- 5. To develop an understanding of tools on Working Capital Management.

UNIT I INTRODUCTION TO FINANCIAL MANGEMENT

9

Definition and Scope of Finance Functions - Objectives of Financial Management - Profit Maximization and Wealth Maximization- Time Value of money- Risk and return concepts.

UNIT II. SOURCES OF FINANCE

9

Long term sources of Finance -Equity Shares – Debentures - Preferred Stock – Features – Merits and Demerits. Short term sources - Bank Sources, Trade Credit, Overdrafts, Commercial Papers, Certificate of Deposits, Money market mutual funds etc

UNIT III INVESTMENT DECISIONS

q

Investment Decisions: capital budgeting – Need and Importance – Techniques of Capital Budgeting – Payback -ARR – NPV – IRR –Profitability Index.

Cost of Capital - Cost of Specific Sources of Capital - Equity -Preferred Stock - Debt - Reserves - Concept and measurement of cost of capital - Weighted Average Cost of Capital.

UNIT IV FINANCING AND DIVIDEND DECISION

9

Operating Leverage and Financial Leverage- EBIT-EPS analysis. Capital Structure – determinants of Capital structure- Designing an Optimum capital structure. Dividend policy - Aspects of dividend policy - practical consideration - forms of dividend policy - Determinants of Dividend Policy

UNIT V WORKING CAPITAL DECISION

9

Working Capital Management: Working Capital Management - concepts - importance -Determinants of Working capital. Cash Management: Motives for holding cash — Objectives and Strategies of Cash Management. Receivables Management: Objectives - Credit policies.

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. M.Y. Khan and P.K.Jain Financial management, Text, Tata McGraw Hill
- 2. M. Pandey Financial Management, Vikas Publishing House Pvt. Ltd

REFERENCES.

- 1. James C. Vanhorne –Fundamentals of Financial Management– PHI Learning,.
- 2. Prasanna Chandra, Financial Management,
- 3. Srivatsava, Mishra, Financial Management, Oxford University Press, 2011

FUNDAMENTALS OF INVESTMENT

L T P C 3 0 0 3

OBJECTIVES:

- 1. Describe the investment environment in which investment decisions are taken.
- 2. Explain how to Value bonds and equities
- 3. Explain the various approaches to value securities
- 4. Describe how to create efficient portfolios through diversification
- 5. Discuss the mechanism of investor protection in India.

UNITI THE INVESTMENT ENVIRONMENT

The investment decision process, Types of Investments – Commodities, Real Estate and FinancialAssets, the Indian securities market, the market participants and trading of securities, securitymarket indices, sources of financial information, Concept of return and risk, Impact of Taxes and Inflation on return.

UNIT II FIXED INCOME SECURITIES

Bond features, types of bonds, estimating bond yields, Bond Valuation types of bond risks, defaultrisk andcreditrating.

UNIT III APPROACHES TOEQUITYANALYSIS

Introduction to Fundamental Analysis, Technical Analysis and Efficient Market Hypothesis, dividend capitalisation models, and price-earnings multiple approach to equity valuation.

UNIT IV PORTFOLIO ANALYSIS AND FINANCIAL DERIVATIVES

Portfolio and Diversification, Portfolio Risk and Return; Mutual Funds; Introduction to Financial Derivatives; Financial Derivatives Markets in India

UNIT V INVESTOR PROTECTION

Role of SEBI and stock exchanges in investor protection; Investor grievances and their redressal system, insider trading, investors' awareness andactivism

TOTAL: 45 PERIODS

REFERENCES:

- 1. Charles P. Jones, Gerald R. Jensen. Investments: analysis and management. Wiley, 14TH Edition, 2019.
- 2. Chandra, Prasanna. Investment analysis and portfolio management. McGraw-hill education, 5th, Edition, 2017.
- 3. Rustagi, R. P. Investment Management Theory and Practice. Sultan Chand & Sons, 2021.
- 4. ZviBodie, Alex Kane, Alan J Marcus, PitabusMohanty, Investments, McGraw Hill Education (India), 11 Edition(SIE), 2019

CMG333

BANKING, FINANCIAL SERVICES AND INSURANCE

L T P C 3 0 0 3

OBJECTIVES

- Understand the Banking system in India
- Grasp how banks raise their sources and how they deploy it
- Understand the development in banking technology
- Understand the financial services in India
- Understand the insurance Industry in India

UNIT I INTRODUCTION TO INDIAN BANKING SYSTEM

a

Overview of Banking system – Structure – Functions –Banking system in India - Key Regulations in Indian Banking sector –RBI. Relationship between Banker and Customer - Retail & Wholesale Banking – types of Accounts - Opening and operation of Accounts.

UNIT II MANAGING BANK FUNDS/ PRODUCTS

9

Liquid Assets - Investment in securities - Advances - Loans.Negotiable Instruments - Cheques, Bills of Exchange & Promissory Notes.Designing deposit schemes - Asset and Liability Management - NPA's - Current issues on NPA's - M&A's of banks into securities market

UNIT III DEVELOPMENT IN BANKING TECHNOLOGY

9

Payment system in India – paper based – e payment –electronic banking –plastic money – e-money –forecasting of cash demand at ATM's –The Information Technology Act, 2000 in India – RBI's Financial Sector Technology vision document – security threats in e-banking & RBI's Initiative.

UNIT IV FINANCIAL SERVICES

9

Introduction – Need for Financial Services – Financial Services Market in India – NBFC — Leasing and Hire Purchase — mutual funds. Venture Capital Financing –Bill discounting –factoring – Merchant Banking

UNIT V INSURANCE

9

Insurance -Concept - Need - History of Insurance industry in India. Insurance Act, 1938 -IRDA - Regulations - Life Insurance - Annuities and Unit Linked Policies - Lapse of the Policy - revival - settlement of claim

TOTAL: 45 PERIODS

REFERENCES:

- 1. Padmalatha Suresh and Justin Paul, "Management of Banking and Financial Services, Pearson, Delhi, 2017.
- 2. Meera Sharma, "Management of Financial Institutions with emphasis on Bank and Risk Management", PHI Learning Pvt. Ltd., New Delhi 2010
- 3. Peter S. Rose and Sylvia C. and Hudgins, "Bank Management and Financial Services", Tata McGraw Hill, New Delhi, 2017

CMG334 INTRODUCTION TO BLOCKCHAIN AND ITS APPLICATIONS

L T P C 3 0 0 3

UNIT I INTRODUCTION TO BLOCKCHAIN

q

Blockchain: The growth of blockchain technology - Distributed systems - The history of blockchain and Bitcoin - Features of a blockchain - Types of blockchain, Consensus: Consensus mechanism - Types of consensus mechanisms - Consensus in blockchain. Decentralization: Decentralization using blockchain - Methods of decentralization - Routes to decentralization- Blockchain and full ecosystem decentralization - Smart contracts - Decentralized Organizations- Platforms for decentralization.

UNIT II INTRODUCTION TO CRYPTOCURRENCY

9

Bitcoin – Digital Keys and Addresses – Transactions – Mining – Bitcoin Networks and Payments – Wallets – Alternative Coins – Theoretical Limitations – Bitcoin limitations – Name coin – Prime coin – Zcash – Smart Contracts – Ricardian Contracts- Deploying smart contracts on a blockchain

UNIT III ETHEREUM

9

Introduction - The Ethereum network - Components of the Ethereum ecosystem - Transactions and messages - Ether cryptocurrency / tokens (ETC and ETH) - The Ethereum Virtual Machine (EVM), Ethereum Development Environment: Test networks - Setting up a private net - Starting up the private network

UNIT IV WEB3 AND HYPERLEDGE `

g

Introduction to Web3 – Contract Deployment – POST Requests – Development Frameworks – Hyperledger as a Protocol – The Reference Architecture – Hyperledger Fabric – Distributed Ledger – Corda.

UNIT V EMERGING TRENDS

9

Kadena – Ripple – Rootstock – Quorum – Tendermint – Scalability – Privacy – Other Challenges – Blockchain Research – Notable Projects – Miscellaneous Tools.

TOTAL: 45 PERIODS

REFERENCE

- 1. Imran. Bashir. Mastering block chain: Distributed Ledger Technology, Decentralization, and Smart Contracts Explained. Packt Publishing, 2nd Edition, 2018
- 2. Peter Borovykh, Blockchain Application in Finance, Blockchain Driven, 2nd Edition, 2018
- 3. ArshdeepBahga, Vijay Madisetti, "Blockchain Applications: A Hands On Approach", VPT, 2017.

CMG335

FINTECH PERSONAL FINANCE AND PAYMENTS

L T PC 3 0 0 3

UNIT I CURRENCY EXCHANGE AND PAYMENT

9

Understand the concept of Crypto currency- Bitcoin and Applications -Cryptocurrencies and Digital Crypto Wallets -Types of Cryptocurrencies - Cryptocurrencies and Applications, block chain, Artificial Intelligence, machine learning. Fintech users, Individual Payments, RTGS Systems, Immediate Page 54 of 90 Payment Service (IMPS), Unified Payments Interface (UPI).Legal and Regulatory Implications of Crypto currencies, Payment systems and their regulations.Digital Payments Smart Cards, Stored-Value Cards, EC Micropayments, Payment Gateways, Mobile Payments, Digital and Virtual Currencies, Security, Ethical, Legal, Privacy, and Technology Issues

UNIT II DIGITAL FINANCE AND ALTERNATIVE FINANCE

9

A Brief History of Financial Innovation, Digitization of Financial Services, Crowd funding, Charity and Equity,. Introduction to the concept of Initial Coin Offering

UNIT III INSURETECH

9

InsurTech Introduction , Business model disruption AI/ML in InsurTech IoT and InsurTech ,Risk Modeling ,Fraud Detection Processing claims and Underwriting Innovations in Insurance Services

UNIT IV PEER TO PEER LENDING

9

P2P and Marketplace Lending, New Models and New Products in market place lending P2P Infrastructure and technologies, Concept of Crowdfunding Crowdfunding Architecture and

Technology ,P2P and Crowdfunding unicorns and business models , SME/MSME Lending: Unique opportunities and Challenges, Solutions and Innovations

UNIT V REGULATORY ISSUES

q

FinTech Regulations: Global Regulations and Domestic Regulations, Evolution of RegTech, RegTech Ecosystem: Financial Institutions, RegTech Ecosystem: StartupsRegTech, Startups: Challenges, RegTech Ecosystem: Regulators, Use of AI in regulation and Fraud detection

TOTAL: 45 PERIODS

REFERENCES:

- 1. Swanson Seth, Fintech for Beginners: Understanding and Utilizing the power of technology, Createspace Independent Publishing Platform, 2016.
- 2. Models AuTanda, Fintech Bigtech And Banks Digitalization and Its Impact On Banking Business, Springer, 2019
- 3. Henning Diedrich, Ethereum: Blockchains, Digital Assets, Smart Contracts, Decentralized Autonomous Organizations, Wildfire Publishing, 2016
- 4. Jacob William, FinTech:TheBeginner's Guide to Financial Technology, Createspace Independent Publishing Platform, 2016
- 5. IIBF, Digital Banking, Taxmann Publication, 2016
- 6. Jacob William, Financial Technology, Create space Independent Pub, 2016
- 7. Luke Sutton, Financial Technology: Bitcoin & Blockchain, Createspace Independent Pub, 2016

CMG336

INTRODUCTION TO FINTECH

L T P C 3 0 0 3

OBJECTIVES:

- 1. To learn about history, importance and evolution of Fintech
- 2. To acquire the knowledge of Fintech in payment industry
- 3. To acquire the knowledge of Fintech in insurance industry
- 4. To learn the Fintech developments around the world
- 5. To know about the future of Fintech

UNIT I INTRODUCTION

9

Fintech - Definition, History, concept, meaning, architecture, significance, Goals, key areas in Fintech, Importance of Fintech, role of Fintech in economic development, opportunities and challenges in Fintech, Evolution of Fintech in different sectors of the industry - Infrastructure, Banking Industry, Startups and Emerging Markets, recent developments in FinTech, future prospects and potential issues with Fintech.

UNIT II PAYMENT INDUSTRY

9

FinTech in Payment Industry-Multichannel digital wallets, applications supporting wallets, onboarding and KYC application, FinTech in Lending Industry- Formal lending, Informal lending, P2P lending, POS lending, Online lending, Payday lending, Microfinance, Crowdfunding.

UNIT III INSURANCE INDUSTRY

9

FinTech in Wealth Management Industry-Financial Advice, Automated investing, Socially responsible investing, Fractional Investing, Social Investing, FinTech in Insurance Industry- P2P insurance, On-

Demand Insurance, On-Demand Consultation, Customer engagement through Quote to sell, policy servicing, Claims Management, Investment linked health insurance.

UNIT IV FINTECH AROUND THE GLOBE

9

FinTech developments - US, Europe and UK, Germany, Sweden, France, China, India, Africa, Australia, New Zealand, Brazil and Middle East, Regulatory and Policy Assessment for Growth of FinTech. FinTech as disruptors, Financial institutions collaborating with FinTech companies, The new financial world.

UNIT V FUTURE OF FINTECH

9

How emerging technologies will change financial services, the future of financial services, banking on innovation through data, why FinTech banks will rule the world, The FinTech Supermarket, Banks partnering with FinTech start-ups, The rise of BankTech, Fintech impact on Retail Banking, A future without money, Ethics in Fintech.

TOTAL:45 PERIODS

REFERENCES

- 1. Arner D., Barbers J., Buckley R, The evolution of FinTech: a new post crisis paradigm, University of New South Wales Research Series, 2015
- 2. Susanne Chishti, Janos Barberis, The FINTECH Book: The Financial Technology Handbook for Investors, Entrepreneurs and Visionaries, Wiley Publications, 2016
- 3. Richard Hayen, FinTech: The Impact and Influence of Financial Technology on Banking and the Finance Industry, 2016
- 4. Parag Y Arjunwadkar, FinTech: The Technology Driving Disruption in the financial service industry CRC Press, 2018
- 5. Sanjay Phadke, Fintech Future : The Digital DNA of Finance Paperback .Sage Publications, 2020
- 6. Pranay Gupta, T. Mandy Tham, Fintech: The New DNA of Financial Services Paperback, 2018

VERTICAL 2: ENTREPRENEURSHIP

CMG337 FOUNDATIONS OF ENTREPRENERUSHIP

L T P C 3 00 3

COURSE OBJECTIVES:

- To develop and strengthen the entrepreneurial quality and motivation of learners.
- To impart the entrepreneurial skills and traits essential to become successful entrepreneurs.
- To apply the principles and theories of entrepreneurship and management in Technology oriented businessess.
- To empower the learners to run a Technology driven business efficiently and effectively

UNIT I INTRODUCTION TO ENTREPRENEURSHIP

9

Entrepreneurship- Definition, Need, Scope - Entrepreneurial Skill & Traits - Entrepreneur vs. Intrapreneur; Classification of entrepreneurs, Types of entrepreneurs -Factors affecting entrepreneurial development - Achievement Motivation - Contributions of Entreprenship to Economic Development.

UNIT II BUSINESS OWNERSHIP & ENVRIONMENT

Types of Business Ownership – Buiness Envrionemental Factors – Political-Economic-Sociological-Technological-Environmental-Legal aspects – Human Reosurces Mobilisation-Basics of Managing Finance- Esentials of Marketing Management - Production and Operations Planning – Systems Management and Administration

UNIT III FUNDAMENTALS OF TECHNOPRENEURSHIP

۵

Introduction to Technopreneurship - Definition, Need, Scope- Emerging Concepts- Principles - Characterisitcis of a technopreneur - Impacts of Technopreneurship on Society - Economy- Job Opportuinites in Technopreneurship - Recent trends

UNIT IV APPLICATIONS OF TECHNOPRENEURSHIP

9

Technology Entrepreneurship - Local, National and Global practices - Intrapreneurship and Technology interactions, Networking of entrepreneurial activities – Launching - Managing Technology based Product / Service entrepreneurship - Success Stories of Technopreneurs - Case Studies

UNIT V EMERGING TRENDS IN ENTREPRENERUSHIP

9

Effective Business Management Strategies For Franchising - Sub-Contracting- Leasing-Technopreneurs - Agripreneurs - Netpreneurs- Portfolio entrepreneruship - NGO Entrepreneurship - Recent Entrepreneruial Develoments - Local - National - Global perspectives.

TOTAL45: PERIODS

OUTCOMES:

Upon completion of this course, the student should be able to:

- CO 1 Learn the basics of Entrepreneurship
- CO 2 Understand the business ownership patterns and evnironment
- CO 3 Understand the Job opportunites in Industries relating to Technopreneurship
- CO 4 Learn about applications of tehnopreneurship and successful technopreneurs
- CO 5 Acquaint with the recent and emerging trends in entrepreneruship

TEXT BOOKS:

- 1) S.S.Khanka, "Entrepreneurial Development" S.Chand & Co. Ltd. Ram Nagar New Delhi, 2021.
- 2) Donal F Kuratko Entrepreneurship (11th Edition) Theory, Process, Practice by Published 2019 by Cengage Learning.

REFERENCES:

- 1) Daniel Mankani. 2003. Technopreneurship: The successful Entrepreneur in the new Economy. Prentice Hall
- 2) Edward Elgar. 2007. Entrepreneurship, Cooperation and the Firm: The Emergence and Survival of High-Technology Ventures in Europe. Edi: Jan Ulijn, Dominique Drillon, and Frank Lasch. Wiley Pub.
- 3) Lang, J. 2002, The High Tech Entrepreneur's Handbook, Ft.com.
- 4) David Sheff 2002, China Dawn: The Story of a Technology and Business Revolution,
- 5) HarperBusiness, https://fanny.staff.uns.ac.id/files/2013/12/Technopreneur-BASED-EDUCATION-REVOLUTION.pdf
- 6) JumpStart: A Technoprenuership Fable, Dennis Posadas, (Singapore: Pearson Prentice Hall, 2009
- 7) Basics of Technoprenuership: Module 1.1-1.2, Frederico Gonzales, President-PESO Inc; M. Barcelon, UP
- 8) Journal articles pertaining to Entrepreneurship

9

COURSE OBJECTIVES:

- To develop and strengthen the Leadership qualities and motivation of learners.
- To impart the Leadership skills and traits essential to become successful entrepreneurs.
- To apply the principles and theories of Team Building in managing Technology oriented businessess.
- To empower the learners to build robust teams for running and leading a business efficiently and effectively

UNIT I INTRODUCTION TO MANAGING TEAMS

9

Introduction to Team - Team Dynamics - Team Formation – Stages of Team Devlopment - Enhancing teamwork within a group - Team Coaching - Team Decision Making - Virtual Teams - Self Directed Work Teams (SDWTs) - Multicultural Teams.

UNIT II MANAGING AND DEVELOPING EFFECTIVE TEAMS

9

Team-based Organisations- Leadershp roles in team-based organisations - Offsite training and team development - Experiential Learning - Coaching and Mentoring in team building - Building High-Performance Teams - Building Credibility and Trust - Skills for Developing Others - Team Building at the Top - Leadership in Teamwork Effectiveness.

UNIT III INTRODUCTION TO LEADERSHIP

9

Introduction to Leadership - Leadership Myths - Characteristics of Leader, Follower and Situation - Leadership Attributes - Personality Traits and Leadership - Intelligence Types and Leadership - Power and Leadership - Delegation and Empowerment .

UNIT IV LEADERSHIP IN ORGANISATIONS

9

Leadership Styles – LMX Theory- Leadership Theory and Normative Decision Model - Situational Leadership Model - Contingency Model and Path Goal Theory – Transactional and Transformational Leadership - Charismatic Leadership - Role of Ethics and Values in Organisational Leadership.

UNIT V LEADERSHIP EFFECTIVENESS

9

Leadership Behaviour - Assessment of Leadership Behaviors - Destructive Leadership - Motivation and Leadership - Managerial Incompetence and Derailment Conflict Management - Negotiation and Leadership - Culture and Leadership - Global Leadership - Recent Trends in Leadership.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of this course, the student should be able to:

- CO 1 Learn the basics of managing teams for business.
- CO 2 Understand developing effective teams for business management.
- CO 3 Understand the fundamentals of leadership for running a business.
- CO 4 Learn about the importance of leadership for business development.
- CO 5 Acquaint with emerging trends in leadership effectiveness for entreprenerus."

REFERENCES:

- 1. Hughes, R.L., Ginnett, R.C., & Curphy, G.J., Leadership: Enhancing the lessons of experience, 9th Ed, McGraw Hill Education, Chennai, India. (2019).
- 2. Katzenback, J.R., Smith, D.K., The Wisdom of Teams: Creating the High Performance Organisations, Harvard Business Review Press, (2015).

- 3. Haldar, U.K., Leadership and Team Building, Oxford University Press, (2010).
- 4. Daft, R.L., The Leadership Experience, Cengage, (2015).
- 5. Daniel Levi, Group Dynamics for Teams ,4th Ed, (2014), Sage Publications.
- 6. Dyer, W. G., Dyer, W. G., Jr., & Dyer, J. H..Team building: Proven strategies for improving team performance, 5thed, Jossey-Bass, (2013).

CMG339 CREATIVITY & INNOVATION IN ENTREPRENEURSHIP

L T P C 3 0 0 3

COURSE OBJECTIVES

- To develop the creativity skills among the learners
- To impart the knowledge of creative intelligence essential for entrepreneurs
- To know the applications of innovation in entprerenship.
- To develoop innovative business models for business.

UNIT I CREATIVITY

9

Creativity: Definition- Forms of Creativity-Essence, Elaborative and Expressive Creativities- Quality of Creativity-Existential, Entrepreneurial and Empowerment Creativities – Creative Environment-Creative Technology - Creative Personality and Motivation.

UNIT II CREATIVE INTELLIGENCE

9

Creative Intelligence: Convergent thinking ability – Traits Congenial to creativity – Creativity Training-Criteria for evaluating Creativity-Credible Evaluation- Improving the quality of our creativity – Creative Tools and Techniques - Blocks to creativity- fears and Disabilities- Strategies for Unblocking-Designing Creativity Enabling Environment.

UNIT III INNOVATION

9

Innovation: Definition- Levels of Innovation- Incremental Vs Radical Innovation-Product Innovation and Process- Technological, Organizational Innovation – Indicators- Characteristics of Innovation in Different Sectors. Theories in Innovation and Creativity- Design Thinking and Innovation- Innovation as Collective Change-Innovation as a system

UNIT IV INNOVATION AND ENTREPRENEURSHIP

q

Innovation and Entrepreneurship: Entrepreneurial Mindset, Motivations and Behaviours-Opportunity Analysis and Decision Making- Industry Understanding - Entrepreneurial Opportunities-Entrepreneurial Strategies – Technology Pull/Market Push – Product -Market fit

UNIT V INNOVATIVE BUSINESS MODELS

9

TOTAL 45: PERIODS

Innovative Business Models: Customer Discovery-Customer Segments-Prospect Theory and Developing Value Propositions- Developing Business Models: Elements of Business Models – Innovative Business Models: Elements, Designing Innovative Business Models- Responsible Innovation and Creativity.

COURSE OUTCOMES:

Upon completion of this course, the student should be able to:

- CO 1 Learn the basics of creativity for developing Entrepreneurship
- CO 2 Understand the importance of creative inteligence for business growth
- CO 3 Understand the advances through Innovation in Industries
- CO 4 Learn about applications of innovation in building successful ventures
- CO 5 Acquaint with developing innovative business models to run the business effeciently and effectively

SUGGESTED READINGS:

- 1 Creativity and Inovation in Entrepreneurship, Kankha, Sultan Chand
- 2 Pradip N Khandwalla, Lifelong Creativity, An Unending Quest, Tata Mc Graw Hill, 2004.
- 3 Paul Trott, Innovation Management and New Product Development, 4e, Pearson, 2018.
- 4 Vinnie Jauhari, Sudanshu Bhushan, Innovation Management, Oxford Higher Education, 2014.
- 5 Innovation Management, C.S.G. Krishnamacharyulu, R. Lalitha, Himalaya Publishing House, 2010
- 6 Dale Timpe, Creativity, Jaico Publishing House, 2003.
- 7 Brian Clegg, Paul Birch, Creativity, Kogan Page, 2009.
- 8 Strategic Innovation: Building and Sustaining Innovative Organizations- Course Era, Raj Echambadi.

CMG340 PRINCIPLES OF MARKETING MANAGEMENT FOR BUSINESS L T P C 3 0 0 3

COURSE OBJECTIVES:

- To provide basic knowledge of concepts, principles, tools and techniques of marketing for entrepreneurs
- To provide an exposure to the students pertaining to the nature and Scope of marketing, which they are expected to possess when they enter the industry as practitioners.
- To give them an understanding of fundamental premise underlying market driven strategies and the basic philosophies and tools of marketing management for business owners.

UNIT I INTRODUCTION TO MARKETING MANAGEMENT

9

Introduction - Market and Marketing - Concepts- Functions of Marketing - Importance of Marketing - Marketing Orientations - Marketing Mix-The Traditional 4Ps - The Modern Components of the Mix - The Additional 3Ps - Developing an Effective Marketing Mix.

UNIT II MARKETING ENVIRONMENT

9

Introduction - Environmental Scanning - Analysing the Organisation's Micro Environment and Macro Environment - Differences between Micro and Macro Environment - Techniques of Environment Scanning - Marketing organization - Marketing Research and the Marketing Information System, Types and Components.

UNIT III PRODUCT AND PRICING MANAGEMENT

9

Product- Meaning, Classification, Levels of Products – Product Life Cycle (PLC) - Product Strategies - Product Mix - Packaging and Labelling - New Product Development - Brand and Branding - Advantages and disadvantages of branding Pricing - Factors Affecting Price Decisions - Cost Based Pricing - Value Based and Competition Based Pricing - Pricing Strategies - National and Global Pricing.

UNIT IV PROMOTION AND DISTRIBTUION MANAGEMENT

9

Introduction to Promotion – Marketing Channels- Integrated Marketing Communications (IMC) - Introduction to Advertising and Sales Promotion – Basics of Public Relations and Publicity - Personal Selling - Process - Direct Marketing - Segmentation, Targeting and Positioning (STP)-Logistics Management- Introduction to Retailing and Wholesaling.

UNIT V CONTEMPORARY ISSUES IN MARKETING MANAGEMENT

g

Introduction - Relationship Marketing Vs. Relationship Management - Customer Relationship Management (CRM) - Forms of Relationship Management - CRM practices - Managing Customer Loyalty and Development - Buyer-Seller Relationships- Buying Situations in Industrial / Business Market - Buying Roles in Industrial Marketing - Factors that Influence Business - Services Marketing - E-Marketing or Online Marketing.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of this course, the students will be able to:

- CO1 Have the awareness of marketing management process
- CO 2 Understand the marketing environment
- CO 3 Acquaint about product and pricing strategies
- CO 4 Knowledge of promotion and distribution in marketing management.
- CO 5 Comprehend the contemporary marketing scenairos and offer solutions to marketing issues.

REFERENCES:

- 1. Marketing Management, Sherlekar S.A, Himalaya Publishing House, 2016.
- 2. Marketing Management, Philip Kortler and Kevin Lane Keller, PHI 15th Ed, 2015.
- 3 Marketing Management- An Indian perspective, Vijay Prakash Anand, Biztantra, Second edition, 2016.
- 4. Marketing Management Global Perspective, Indian Context, V.S.Ramaswamy &
- S.Namakumari, Macmillan Publishers India,5th edition, 2015.
- 5. Marketing Management, S.H.H. Kazmi, 2013, Excel Books India.
- 6. Marketing Management- text and Cases, Dr. C.B.Gupta & Dr. N.Rajan Nair, 17th edition, 2016.

CMG341 HUMAN RESOURCE MANAGEMENT FOR ENTREPRENEURS L T P C

OBJECTIVES:

- 1) To introduce the basic concepts, structure and functions of human resource management for entrepreneurs.
- 2) To create an awareness of the roles, functions and functioning of human resource department.
- 3) To understand the methods and techniques followed by Human Resource Management practitioners.

UNIT I INTRODUCTION TO HRM

9

Concept, Definition, Objectives- Nature and Scope of HRM - Evolution of HRM - HR Manager Roles-Skills - Personnel Management Vs. HRM - Human Resource Policies - HR Accounting - HR Audit - Challenges in HRM.

UNIT II HUMAN RESOURCE PLANNING

9

HR Planning - Definition - Factors- Tools - Methods and Techniques - Job analysis- Job rotation- Job Description - Career Planning - Succession Planning - HRIS - Computer Applications in HR - Recent Trends

UNIT III RECRUITMENT AND SELECTION

9

Sources of recruitment- Internal Vs. External - Domestic Vs. Global Sources -eRecruitment - Selection Process- Selection techniques -eSelection- Interview Types- Employee Engagement.

UNIT IV TRAINING AND EMPLOYEE DEVELOPMENT

9

Types of Training - On-The-Job, Off-The-Job - Training Needs Analysis – Induction and Socialisation Process - Employee Compensation - Wages and Salary Administration – Health and Social Security Measures- Green HRM Practices

UNIT V CONTROLLING HUMAN RESOURCES

9

Performance Appraisal – Types - Methods - Collective Bargaining - Grievances Redressal Methods – Employee Discipline – Promotion – Demotion - Transfer – Dismissal - Retrenchment - Union Management Relationship - Recent Trends

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of this course the learners will be able:

- CO 1 To understand the Evolution of HRM and Challenges faced by HR Managers
- CO 2 To learn about the HR Planning Methods and practices.
- CO 3 To acquaint about the Recruitment and Selection Techniques followed in Industries.
- CO 4 To known about the methods of Training and Employee Development.
- CO 5 To comprehend the techniques of controlling human resources in organisations.

REFERENCES:

- 1) Gary Dessler and Biju Varkkey, Human Resource Management, 14e, Pearson, 2015.
- 2) Mathis and Jackson, Human Resource Management, Cengage Learning 15e, 2017.
- 3) David A. Decenzo, Stephen.P.Robbins, and Susan L. Verhulst, Human Resource Management, Wiley, International Student Edition, 11th Edition, 2014
- 4) R. Wayne Mondy, Human Resource Management, Pearson, 2015.
- 5) Luis R.Gomez-Mejia, David B.Balkin, Robert L Cardy. Managing Human Resource. PHI Learning. 2012
- 6) John M. Ivancevich, Human Resource Management, 12e, McGraw Hill Irwin, 2013.
- 7) K. Aswathappa, Sadhna Dash, Human Resource Management Text and Cases, 9th Edition, McGraw Hill, 2021.
- 8) Uday Kumar Haldar, Juthika Sarkar. Human Resource management. Oxford. 2012

CMG342 FINANCING NEW BUSINESS VENTURES

LT P C 3 0 0 3

COURSE OBJECTIVES:

- To develop the basics of business venture financing.
- To impart the knowledge essential for entrepreneurs for financing new ventures.
- To acquaint the learners with the sources of debt and guity financing.
- To empower the learners towards fund rasiing for new ventures effectively.

UNIT I ESSENTIALS OF NEW BUSINES VENTURE

9

Setting up new Business Ventures – Need - Scope - Franchising - Location Strategy, Registration Process - State Directorate of Industries- Financing for New Ventures - Central and State Government Agencies - Types of loans – Financial Institutions - SFC, IDBI, NSIC and SIDCO.

UNIT II INTRODUCTION TO VENTURE FINANCING

9

Venture Finance – Definition – Historic Background - Funding New Ventures- Need – Scope – Types - Cost of Project - Means of Financing - Estimation of Working Capital - Requirement of funds – Mix of Dent and Equity - Challenges and Opportunities.

UNIT III SOURCES OF DEBT FINANCING

9

Fund for Capital Assets - Term Loans - Leasing and Hire-Purchase - Money Market instruments - Bonds, Corporate Papers - Preference Capital- Working Capital Management- Fund based Credit Facilities - Cash Credit - Over Draft.

UNIT IV SOURCES OF EQUITY FINANCING

9

Own Capital, Unsecured Loan - Government Subsidies , Margin Money- Equity Funding - Private Equity Fund- Schemes of Commercial banks - Angel Funding - Crowdfunding- Venture Capital.

UNIT V METHODS OF FUND RAISING FOR NEW VENTURES

Investor Decision Process - Identifying the appropriate investors- Targeting investors- Developing Relationships with investors - Investor Selection Criteria- Company Creation- Raising Funds - Seed Funding- VC Selection Criteria – Process- Methods- Recent Trends

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of this course, the students should be able to:

- CO 1 Learn the basics of starting a new business venture.
- CO 2 Understand the basics of venture financing.
- CO 3 Understand the sources of debt financing.
- CO 4 Understanf the sources of equity financing.
- CO 5 Acquaint with the methods of fund raising for new business ventures.

REFERENCES:

- 1) Principles of Corporate Finance by Brealey and Myers et al.,12TH ed, McGraw Hill Education (India) Private Limited, 2018
- 2) Prasanna Chandra, Projects: Planning , Analysis, Selection , Financing, Implementation and Review, McGraw Hilld Education India Pvt Ltd , New Delhi , 2019.
- 3) Introduction to Project Finance. Andrew Fight, Butterworth-Heinemann, 2006.
- 4) Metrick, Andrew; Yasuda, Ayako. Venture Capital And The Finance Of Innovation. Venture Capital And The Finance Of Innovation, 2nd Edition, Andrew Metrick And Ayako Yasuda, Eds., John Wiley And Sons, Inc., 2010.
- 5) Feld, Brad; Mendelson, Jason. Venture Deals. Wiley, 2011.
- 6) May, John; Simons, Cal. Every Business Needs An Angel: Getting The Money You Need To Make Your Business Grow. Crown Business, 2001.
- 7) Gompers, Paul Alan; Lerner, Joshua. The Money Of Invention: How Venture Capital Creates New Wealth. Harvard Business Press, 2001.
- 8) Camp, Justin J. Venture Capital Due Diligence: A Guide To Making Smart Investment Choices And Increasing Your Portfolio Returns. John Wiley & Sons, 2002.
- 9) Byers, Thomas. Technology Ventures: From Idea To Enterprise. Mcgraw-Hill Higher Education, 2014.
- 10) Lerner, Josh; Leamon, Ann; Hardymon, Felda. Venture Capital, Private Equity, And The Financing Of Entrepreneurship. 2012.

VERTICAL 3: PUBLIC ADMINISTRATION

CMG343 PRINCIPLES OF PUBLIC ADMINISTRATION

LTPC 3003

(9)

1. Meaning, Nature and Scope of Public Administration

- 2. Importance of Public Administration

3. Evolution of Public Administration

UNIT-II (9)

- 1. New Public Administration
- 2. New Public Management

UNIT-I

3. Public and Private Administration

UNIT-III (9) 1. Relationships with Political Science, History and Sociology 2. Classical Approach 3. Scientific Management Approach **UNIT-IV** (9) 1. Bureaucratic Approach: Max Weber 2. Human Relations Approach: Elton Mayo 3. Ecological Approach: Riggs **UNIT-V** (9) 1. Leadership: Leadership - Styles - Approaches 2. Communication: Communication Types - Process - Barriers 3. Decision Making: Decision Making - Types, Techniques and Processes. **TOTAL: 45 PERIODS** REFERENCEs: 1. Avasthi and Maheswari: Public Administration in India, Agra:Lakshmi Narain Agarwal, 2013. 2. Ramesh K Arora: Indian Public Administration, New Delhi: Wishwa Prakashan, 2012. 3. R.B. Jain: Public Administration in India,21st Century Challenges for Good Governance, New Delhi: Deep and Deep, 2002. 4. Rumki Basu: Public Administration: Concept and Theories, New Delhi: Sterling, 2013. 5. R. Tyagi, Public Administration, Atma Ram & Sons, New Delhi, 1983. **CMG344 CONSTITUTION OF INDIA** LTPC 3003 **UNIT-I** (9) 1. Constitutional Development Since 1909 to 1947 2. Making of the Constitution. 3. Constituent Assembly **UNIT-II** (9) 1. Fundamental Rights 2. Fundamental Duties 3. Directive Principles of State Policy **UNIT-III** (9) 1. President 2. Parliament 3. Supreme Court **UNIT-IV** (9) 1. Governor 2. State Legislature 3. High Court **UNIT-V** (9)

1. Secularism

2. Social Justice

3. Minority Safeguards

TOTAL: 45 PERIODS

REFERENCES:

- 1. Basu. D.D.: Introduction to Indian Constitution; Prentice Hall; New Delhi.
- 2. Kapur. A.C: Indian Government and Political System; S.Chand and Company Ltd., New Delhi.
- 3. Johari J.C.: Indian Politics, Vishal Publications Ltd, New Delhi
- 4. Agarwal R.C: Indian Political System; S.Chand & Co., New Delhi

PUBLIC PERSONNEL ADMINISTRATION CMG345 LTPC 3003 **UNIT-I** (9) 1. Meaning, Scope and Importance of Personnel Administration 2. Types of Personnel Systems: Bureaucratic, Democratic and Representative systems **UNIT-II** (9) 1. Generalist Vs Specialist 2. Civil Servants' Relationship with Political Executive 3. Integrity in Administration. **UNIT-III** (9) 1. Recruitment: Direct Recruitment and Recruitment from Within 2. Training: Kinds of Training 3. Promotion **UNIT-IV** (9) 1. All India Services 2. Service Conditions 3. State Public Service Commission

UNIT-V (9)

TOTAL: 45 PERIODS

- 1. Employer Employee Relations
- 2. Wage and Salary Administration
- 3. Allowances and Benefits

REFERENCES:

- 1. Stahl Glean O: Public Personnel Administration
- 2. Parnandikar Pai V.A: Personnel System for Development Administration.
- 3. Bhambhiru . P: Bureaucracy and Policy in India.
- 4. Dwivedi O.P and Jain R.B: India's Administrative state.
- 5. Muttalis M.A: Union Public Service Commission.
- 6. Bhakara Rao .V: Employer Employee Relations in India.
- 7. Davar R.S. Personnel Management & Industrial Relations

ADMINISTRATIVE THEORIES

1 T P C 3 0 0 3

UNIT I (9)

Meaning, Scope and significance of Public Administration, Evolution of Public Administration as a discipline and Identity of Public Administration

UNIT II (9)

Theories of Organization: Scientific Management Theory, Classical Model, Human Relations Theory

UNIT III (9)

Organization goals and Behaviour, Groups in organization and group dynamics, Organizational Design.

UNIT IV (9)

Motivation Theories, content, process and contemporary; Theories of Leadership: Traditional and Modern: Process and techniques of decision-making

UNIT V (9)

Administrative thinkers: Kautilya, Woodrow Willson, C.I. Barnard . Peter Drucker

TOTAL: 45 PERIODS

REFERENCES:

- 1. Crozior M: The Bureaucratic phenomenon (Chand)
- 2. Blau. P.M and Scott. W: Formal Organizations (RKP)
- 3. Presthus. R: The Organizational Society (MAC)
- 4. Alvi, Shum Sun Nisa: Eminent Administrative Thinkers.
- 5. Keith Davis: Organization Theory (MAC)

CMG347 INDIAN ADMINISTRATIVE SYSTEM

LTPC 3 0 0 3

UNIT I (9)

Evolution and Constitutional Context of Indian Administration, Constitutional Authorities: Finance Commission, Union Public Services Commission, Election Commission, Comptroller and Auditor General of India, Attorney General of India

UNIT II (9)

Role & Functions of the District Collector, Relationship between the District Collector and Superintendent of Police, Role of Block Development Officer in development programmes, Local Government

UNIT III (9)

Main Features of 73rd Constitutional Amendment Act 1992, Salient Features of 74th Constitutional Amendment Act 1992

UNIT IV (9)

Coalition politics in India, Integrity and Vigilance in Indian Administration

UNIT V (9)

Corruption - Ombudsman, Lok Pal & Lok Ayuktha

TOTAL: 45 PERIODS

REFERENCES:

- 1. S.R. Maheswari: Indian Administration
- 2. Khera. S.S: Administration in India
- 3. Ramesh K. Arora: Indian Public Administration
- 4. T.N. Chaturvedi: State administration in India
- 5. Basu, D.D: Introduction to the Constitution of India

CMG348

PUBLIC POLICY ADMINISTRATION

LTPC 3003

TOTAL: 45 PERIODS

UNIT-I (9)

Meaning and Definition of Public Policy - Nature, Scope and Importance of public policy - Public policy relationship with social sciences especially with political science and Public Administration.

UNIT-II (9)

Approaches in Policy Analysis - Institutional Approach - Incremental Approach and System's Approach - Dror's Optimal Model

UNIT-III (9)

Major stages involved in Policy making Process – Policy Formulation – Policy Implementation – Policy Evaluation.

UNIT-IV (9)

Institutional Framework of Policy making – Role of Bureaucracy – Role of Interest Groups and Role of Political Parties.

UNIT-V (9)

Introduction to the following Public Policies – New Economic Policy – Population Policy – Agriculture policy - Information Technology Policy.

REFERENCES:

- 1. Rajesh Chakrabarti & Kaushik Sanyal: Public Policy in India, Oxford University Press, 2016.
- 2. Kuldeep Mathur: Public Policy and Politics in India, Oxford University Press, 2016.
- 3. Bidyutv Chakrabarty: Public Policy: Concept, Theory and Practice, 2015.
- 4. Pradeep Saxena: Public Policy Administration and Development
- 5. Sapru R.K.: Public Policy: Formulation, Implementation and Evaluation, Sterling Publishers, 2016.

VERTICAL 4: BUSINESS DATA ANALYTICS

STATISTICS FOR MANAGEMENT CMG349

LTPC 3003

OBJECTIVE:

> To learn the applications of statistics in business decision making.

UNIT I INTRODUCTION

Basic definitions and rules for probability, Baye's theorem and random variables, Probability distributions: Binomial, Poisson, Uniform and Normal distributions.

UNIT II SAMPLING DISTRIBUTION AND ESTIMATION

9

Introduction to sampling distributions, Central limit theorem and applications, sampling techniques, Point and Interval estimates of population parameters.

UNIT III TESTING OF HYPOTHESIS - PARAMETIRC TESTS

9

Hypothesis testing: one sample and two sample tests for means of large samples (z-test), one sample and two sample tests for means of small samples (t-test), ANOVA one way.

UNIT IV NON-PARAMETRIC TESTS

Chi-square tests for independence of attributes and goodness of fit, Kolmogorov-Smirnov – test for goodness of fit, Mann – Whitney U test and Kruskal Wallis test.

UNIT V CORRELATION AND REGRESSION

9

Correlation - Rank Correlation - Regression - Estimation of Regression line - Method of Least Squares – Standard Error of estimate.

TOTAL:45 PERIODS

OUTCOMES:

- > To facilitate objective solutions in business decision making.
- > To understand and solve business problems
- > To apply statistical techniques to data sets, and correctly interpret the results.
- > To develop skill-set that is in demand in both the research and business environments
- > To enable the students to apply the statistical techniques in a work setting.

REFERENCES:

- 1. Richard I. Levin, David S. Rubin, Masood H.Siddiqui, Sanjay Rastogi, Statistics for Management, Pearson Education, 8th Edition, 2017.
- 2. Prem. S. Mann, Introductory Statistics, Wiley Publications, 9th Edition, 2015.
- 3. T N Srivastava and Shailaja Rego, Statistics for Management, Tata McGraw Hill, 3rd Edition 2017.
- 4. Ken Black, Applied Business Statistics, 7th Edition, Wiley India Edition, 2012.
- 5. David R. Anderson, Dennis J. Sweeney, Thomas A.Williams, Jeffrey D.Camm, James
- J.Cochran, Statistics for business and economics, 13th edition, Thomson (South Western) Asia, Singapore, 2016.
- 6. N. D. Vohra, Business Statistics, Tata McGraw Hill, 2017.

CMG350 DATAMINING FOR BUSINESS INTELLIGENCE

LTPC 3003

OBJECTIVES:

> To know how to derive meaning form huge volume of data and information.

> To understand how knowledge discovering process is used in business decision making.

UNIT I INTRODUCTION

9

Data mining, Text mining, Web mining, Data ware house.

UNIT II DATA MINING PROCESS

9

Datamining process – KDD, CRISP-DM, SEMMA Prediction performance measures

UNIT III PREDICTION TECHNIQUES

9

Data visualization, Time series – ARIMA, Winter Holts,

UNIT IV CLASSIFICATION AND CLUSTERING TECHNIQUES

9

Classification, Association, Clustering.

UNIT V MACHINE LEARNING AND AI

9

Genetic algorithms, Neural network, Fuzzy logic, Ant Colony optimization, Particle Swarm optimization

TOTAL: 45 PERIODS

OUTCOMES:

- 1. Learn to apply various data mining techniques into various areas of different domains.
- 2. Be able to interact competently on the topic of data mining for business intelligence.
- 3. Apply various prediction techniques.
- 4. Learn about supervised and unsupervised learning technique.
- 5. Develop and implement machine learning algorithms

REFERENCES:

- 1. Jaiwei Ham and Micheline Kamber, Data Mining concepts and techniques, Kauffmann Publishers 2006
- 2. Efraim Turban, Ramesh Sharda, Jay E. Aronson and David King, Business Intelligence, Prentice Hall, 2008.
- 3. W.H.Inmon, Building the Data Warehouse, fourth edition Wiley India pvt. Ltd. 2005.
- 4. Ralph Kimball and Richard Merz, The data warehouse toolkit, John Wiley, 3rd edition, 2013.
- 5. Michel Berry and Gordon Linoff, Mastering Data mining, John Wiley and Sons Inc, 2nd Edition, 2011
- 6. Michel Berry and Gordon Linoff, Data mining techniques for Marketing, Sales and Customer support, John Wiley, 2011
- 7. G. K. Gupta, Introduction to Data mining with Case Studies, Prentice hall of India, 2011
- 8. Giudici, Applied Data mining Statistical Methods for Business and Industry, John Wiley. 2009
- 9. Elizabeth Vitt, Michael Luckevich Stacia Misner, Business Intelligence, Microsoft, 2011
- 10. Michalewicz Z., Schmidt M. Michalewicz M and Chiriac C, Adaptive Business Intelligence, Springer Verlag, 2007
- 11. GalitShmueli, Nitin R. Patel and Peter C. Bruce, Data Mining for Business Intelligence Concepts, Techniques and Applications Wiley, India, 2010.

CMG351

HUMAN RESOURCE ANALYTICS

LTPC 3003

OBJECTIVE:

- To develop the ability of the learners to define and implement HR metrics that are aligned with the overall business strategy.
- > To know the different types of HR metrics and understand their respective impact and application.
- > To understand the impact and use of HR metrics and their connection with HR analytics.
- > To understand common workforce issues and resolving them using people analytics.

UNIT I INTRODUCTION TO HR ANALYTICS

a

People Analytics - stages of maturity - Human Capital in the Value Chain : impact on business – HR metrics and KPIs.

UNIT II HR ANLYTICS I: RECRUITMENT

9

Recruitment Metrics: Fill-up ratio - Time to hire - Cost per hire - Early turnover - Employee referral hires - Agency hires - Lateral hires - Fulfillment ratio- Quality of hire.

UNIT III HR ANALYTICS - TRAINING AND DEVELOPMENT

9

Training & Development Metrics: Percentage of employees trained- Internally and externally trained -Training hours and cost per employee - ROI.

UNIT IV HR ANALYTICS EMPLOYEE ENGAGEMENT AND CAREER PROGRESSION

9

Employee Engagement Metrics: Talent Retention index - Voluntary and involuntary turnover- grades, performance, and service tenure - Internal hired index Career Progression Metrics: Promotion index - Rotation index - Career path index.

UNIT V HR ANALYTICS IV: WORKFORCE DIVERSITY AND DEVELOPMENT

Workforce Diversity and Development Metrics: Employees per manager – Workforce age profiling - Workforce service profiling - Churnover index - Workforce diversity index - Gender mix

TOTAL: 45 PERIODS

OUTCOME:

- > The learners will be conversant about HR metrics and ready to apply at work settings.
- > The learners will be able to resolve HR issues using people analytics.

REFERENCES:

- 1. JacFitzenz, The New HR Analytics, AMACOM, 2010.
- 2. Edwards M. R., & Edwards K, Predictive HR Analytics: Mastering the HR Metric.London: Kogan Page.2016.
- 3. Human Resources kit for Dummies 3 rd edition Max Messmer, 2003
- 4. Dipak Kumar Bhattacharyya, HR Analytics ,Understanding Theories and Applications, SAGE Publications India ,2017.
- 5. Sesil, J. C., Applying advanced analytics to HR management decisions: Methods fo selection, developing incentives, and improving collaboration. Upper Saddle River, New Jersey: Pearson Education, 2014.
- 6. Pease, G., & Beresford, B, Developing Human Capital: Using Analytics to Plan and Optimize Your Learning and Development Investments. Wiley ,2014.
- 7. Phillips, J., & Phillips, P.P, Making Human Capital Analytics Work: Measuring the ROI of Human Capital Processes and OUTCOME. McGraw-Hill, 2014.
- 8. HR Scorecard and Metrices, HBR, 2001.

CMG352

MARKETING AND SOCIAL MEDIA WEB ANALYTICS

LTPC 3003

OBJECTIVE:

To showcase the opportunities that exist today to leverage the power of the web and social media

UNIT I MARKETING ANALYTICS

9

Marketing Budget and Marketing Performance Measure, Marketing - Geographical Mapping, Data Exploration, Market Basket Analysis

UNIT II COMMUNITY BUILDING AND MANAGEMENT

9

History and Evolution of Social Media-Understanding Science of Social Media –Goals for using Social Media-Social Media Audience and Influencers - Digital PR- Promoting Social Media Pages-Linking Social Media Accounts-The Viral Impact of Social Media.

UNIT III SOCIAL MEDIA POLICIES AND MEASUREMENTS

9

Social Media Policies-Etiquette, Privacy- ethical problems posed by emerging social media technologies - The Basics of Tracking Social Media.

UNIT IV WEB ANALYTICS

Q

Data Collection, Overview of Qualitative Analysis, Business Analysis, KPI and Planning, Critical Components of a Successful Web Analytics Strategy, Proposals & Reports, Web Data Analysis.

UNIT V SEARCH ANALYTICS

9

Search engine optimization (SEO), user engagement, user-generated content, web traffic analysis, online security, online ethics, data visualization.

TOTAL: 45 PERIODS

OUTCOME:

The Learners will understand social media, web and social media analytics and their potential impact.

REFERENCES:

- 1. K. M. Shrivastava, Social Media in Business and Governance, Sterling Publishers Private Limited, 2013
- 2. Christian Fuchs, Social Media a critical introduction, SAGE Publications Ltd, 2014
- 3. Bittu Kumar, Social Networking, V & S Publishers, 2013
- 4. Avinash Kaushik, Web Analytics An Hour a Day, Wiley Publishing, 2007
- 5. Ric T. Peterson, Web Analytics Demystified, Celilo Group Media and CafePress 2004
- 6. Takeshi Moriguchi, Web Analytics Consultant Official Textbook, 7th Edition, 2016

CMG353 OPERATION AND SUPPLY CHAIN ANALYTICS

LTPC 3003

OBJECTIVE:

To treat the subject in depth by emphasizing on the advanced quantitative models and methods in operations and supply chain management and its practical aspects and the latest developments in the field.

UNIT I INTRODUCTION 9

Descriptive, predictive and prescriptive analytics, Data Driven Supply Chains – Basics, transforming supply chains.

UNIT II WAREHOUSING DECISIONS

g

P-Median Methods - Guided LP Approach, Greedy Drop Heuristics, Dynamic Location Models, Space Determination and Layout Methods.

UNIT III INVENTORY MANAGEMENT

9

Dynamic Lot sizing Methods, Multi-Echelon Inventory models, Aggregate Inventory system and LIMIT, Risk Analysis in Supply Chain, Risk pooling strategies.

UNIT IV TRANSPORTATION NETWORK MODELS

9

Minimal Spanning Tree, Shortest Path Algorithms, Maximal Flow Problems, Transportation Problems, Set covering and Set Partitioning Problems, Travelling Salesman Problem, Scheduling Algorithms.

UNIT V MCDM MODELS

9

Analytic Hierarchy Process(AHP), Data Envelopment Analysis (DEA), Fuzzy Logic an Techniques, the analytical network process (ANP), TOPSIS.

TOTAL: 45 PERIODS

OUTCOME:

To enable quantitative solutions in business decision making under conditions of certainty, risk and uncertainty.

REFERENCES:

- 1. Nada R. Sanders, Big data driven supply chain management: A framework for implementing analytics and turning information into intelligence, Pearson Education, 2014.
- 2. Michael Watson, Sara Lewis, Peter Cacioppi, Jay Jayaraman, Supply Chain Network Design: Applying Optimization and Analytics to the Global Supply Chain, Pearson Education, 2013.
- 3. Anna Nagurney, Min Yu, Amir H. Masoumi, Ladimer S. Nagurney, Networks Against Time: Supply Chain Analytics for Perishable Products, Springer, 2013.
- 4. Muthu Mathirajan, Chandrasekharan Rajendran, Sowmyanarayanan Sadagopan, Arunachalam Ravindran, Parasuram Balasubramanian, Analytics in Operations/Supply Chain Management, I.K. International Publishing House Pvt. Ltd., 2016.
- 5. Gerhard J. Plenert, Supply Chain Optimization through Segmentation and Analytics, CRC Press, Taylor & Francis Group, 2014.

CMG354

FINANCIAL ANALYTICS

LTPC

3003

OBJECTIVE:

This course introduces a core set of modern analytical tools that specifically target finance applications.

UNIT I - CORPORATE FINANCE ANALYSIS

9

Basic corporate financial predictive modelling- Project analysis- cash flow analysis- cost of capital, Financial Break even modelling, Capital Budget model-Payback, NPV, IRR.

UNIT II - FINANCIAL MARKET ANALYSIS

Estimation and prediction of risk and return (bond investment and stock investment) –Time series-examining nature of data, Value at risk, ARMA, ARCH and GARCH.

UNIT III - PORTFOLIO ANALYSIS

9

Portfolio Analysis – capital asset pricing model, Sharpe ratio, Option pricing models- binomial model for options, Black Scholes model and Option implied volatility.

UNIT IV - TECHNICAL ANALYSIS

9

Prediction using charts and fundamentals – RSI, ROC, MACD, moving average and candle charts, simulating trading strategies. Prediction of share prices.

UNIT V - CREDIT RISK ANALYSIS

9

Credit Risk analysis- Data processing, Decision trees, logistic regression and evaluating credit risk model.

TOTAL: 45 PERIODS

OUTCOME

The learners should be able to perform financial analysis for decision making using excel, Python and R.

REFERENCES:

- 1. Financial analytics with R by Mark J. Bennett, Dirk L. Hugen, Cambridge university press.
- 2. Haskell Financial Data Modeling and Predictive Analytics Paperback Import, 25 Oct 2013 by Pavel Ryzhov.
- 3. Quantitative Financial Analytics: The Path To Investment Profits Paperback Import, 11 Sep 2017 by Edward E Williams (Author), John A Dobelman.
- 4. Python for Finance Paperback Import, 30 Jun 2017 by Yuxing Yan (Author).
- 5. Mastering Python for Finance Paperback Import, 29 Apr 2015 by James Ma Weiming.

VERTICAL 5: ENVIRONMENT AND SUSTAINABILITY

CES331 SUSTAINABLE INFRASTRUCTURE DEVELOPMENT

LTPC

3 0 0

3

OBJECTIVE:

 To impart knowledge about sustainable Infrastructure development goals, practices and to understand the concepts of sustainable planning, design, construction, maintenance and decommissioning of infrastructure projects.

UNIT I SUSTAINABLE DEVELOPMENT GOALS

9

Definitions, principles and history of Sustainable Development - Sustainable development goals (SDG): global and Indian - Infrastructure Demand and Supply - Environment and Development linkages - societal and cultural demands - Sustainability indicators - Performance indicators of sustainability and Assessment mechanism - Policy frameworks and practices: global and Indian - Infrastructure Project finance - Infrastructure project life cycle - Constraints and barriers for sustainable development - future directions.

UNIT II SUSTAINABLE INFRASTRUCTURE PLANNING

9

Overview of Infrastructure projects: Housing sector, Power sector, Water supply, road, rail and port transportation sector, rural and urban infrastructure. Environmental Impact Assessment (EIA), Land acquisition -Legal aspects, Resettlement &Rehabilitation and Development - Cost effectiveness

Analysis - Risk Management Framework for Infrastructure Projects, Economic, demand, political, socio-environmental and cultural risks. Shaping the Planning Phase of Infrastructure Projects to mitigate risks, Designing Sustainable Contracts, Negotiating with multiple Stakeholders on Infrastructure Projects. Use of ICT tools in planning – Integrated planning - Clash detection in construction - BIM (Building Information Modelling).

UNIT III SUSTAINABLE CONSTRUCTION PRACTICES AND TECHNIQUES

0

Sustainability through lean construction approach - Enabling lean through information technology – Lean in planning and design - IPD (Integrated Project Delivery) - Location Based Management System - Geospatial Technologies for machine control, site management, precision control and real time progress monitoring - Role of logistics in achieving sustainable construction – Data management for integrated supply chains in construction - Resource efficiency benefits of effective logistics - Sustainability in geotechnical practice – Design considerations, Design Parameters and Procedures – Quality control and Assurance - Use of sustainable construction techniques: Precast concrete technology, Pre-engineered buildings.

UNIT IV SUSTAINABLE CONSTRUCTION MATERIALS

9

Construction materials: Concrete, steel, glass, aluminium, timber and FRP - No/Low cement concrete - Recycled and manufactured aggregate - Role of QC and durability - Sustainable consumption – Eco-efficiency - green consumerism - product stewardship and green engineering - Extended producer responsibility – Design for Environment Strategies, Practices, Guidelines, Methods, And Tools. Eco-design strategies –Design for Disassembly - Dematerialization, rematerialization, transmaterialization – Green procurement and green distribution - Analysis framework for reuse and recycling – Typical constraints on reuse and recycling - Communication of Life Cycle Information - Indian Eco mark scheme - Environmental product declarations – Environmental marketing- Life cycle Analysis (LCA), Advances in LCA: Hybrid LCA, Thermodynamic LCA - Extending LCA - economic dimension, social dimension - Life cycle costing (LCC) - Combining LCA and LCC – Case studies

UNIT V SUSTAINABLE MAINTENANCE OF INFRASTRUCTURE PROJECTS

9

TOTAL: 45 PERIODS

Case Studies - Sustainable projects in developed countries and developing nations - An Integrated Framework for Successful Infrastructure Planning and Management - Information Technology and Systems for Successful Infrastructure Management, - Structural Health Monitoring for Infrastructure projects - Innovative Design and Maintenance of Infrastructure Facilities - Capacity Building and Improving the Governments Role in Infrastructure Implementation, Infrastructure Management Systems and Future Directions. – Use of Emerging Technologies – IoT, Big Data Analytics and Cloud Computing, Artificial Intelligences, Machine and Deep Learning, Fifth Generation (5G) Network services for maintenance .

OUTCOME:

On completion of the course, the student is expected to be able to

CO1 Understand the environment sustainability goals at global and Indian scenario.

CO2 Understand risks in development of projects and suggest mitigation measures.

CO3 Apply lean techniques, LBMS and new construction techniques to achieve sustainability in infrastructure construction projects.

CO4 Explain Life Cycle Analysis and life cycle cost of construction materials.

CO5 Explain the new technologies for maintenance of infrastructure projects.

REFERENCES:

- 1. Charles J Kibert, Sustainable Construction : Green Building Design & Delivery, 4th Edition , Wiley Publishers 2016.
- 2. Steve Goodhew, Sustainable Construction Process, Wiley Blackwell, UK, 2016.
- 3. Craig A. Langston & Grace K.C. Ding, Sustainable Practices in the Built Environment, Butterworth Heinemann Publishers, 2011.

- 4. William P Spence, Construction Materials, Methods & Techniques (3e), Yesdee Publication Pvt. Ltd, 2016.
- 5. New Building Materials and Construction World magazine
- 6. Kerry Turner. R, "Sustainable Environmental Management", Principles and Practice Publisher:Belhaven Press,ISBN:1852930039.
- 7. Munier N, "Introduction to Sustainability", Springer2005
- 8. Sharma, "Sustainable Smart Cities In India: Challenges And Future Perspectives", SPRINGER, 2022.
- 9. Ralph Horne, Tim Grant, KarliVerghese, Life Cycle Assessment: Principles, Practice and Prospects, Csiro Publishing, 2009
- European Commission Joint Research Centre Institute for Environment and Sustainability: International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance. Luxembourg. European Union;2010
- 11. Hudson, Haas, Uddin, Infrastructure management: integrating design, construction, maintenance, rehabilitation, and renovation, McGraw Hill, (1997).
- 12. GregerLundesjö, Supply Chain Management and Logistics in Construction: Delivering Tomorrow's Built Environment, Kogan Page Publishers, 2015.

CO's-PO's & PSO's MAPPING

	PO's													PSO's			
С	1	2	3	4	5	6	7	8	9	1	1	1	1	2	3		
0										0	1	2					
,																	
S																	
1	2		1	1		2	3	1	1		2	1	1	2	1		
2	3	1	3	2	1	2	2		1	1	1	2	2	2	2		
3	2	2	3	1	1	1	1				1	1	1	3	1		
4	3	1	3	2	2	1	3	1	1	1	1	2	2	2	2		
5	3	1	2	2	2	2	3	1		1	1	2	2	3	2		
Α	3	1	3	2	2	2	3	1	1	1	1	2	2	3	2		
v																	
g																	

CES332 SUSTAINABLE AGRICULTURE AND ENVIRONMENTAL MANAGEMENT

LTPC 3003

OBJECTIVES:

To educate the students about the issues of sustainability in agroecosystems, introduce the
concepts and principles of agroecology as applied to the design and management of sustainable
agricultural systems for a changing world.

UNIT I AGROECOLOGY, AGROECOSYSTEM AND SUSTAINABLE AGRICULTURE CONCEPTS

Ecosystem definition - Biotic Vs. abiotic factors in an ecosystem - Ecosystem processes - Ecological services and agriculture - Problems associated with industrial agriculture/food systems - Defining sustainability - Characteristics of sustainable agriculture - Difference between regenerative and sustainable agriculture systems

SOIL HEALTH, NUTRIENT AND PEST MANAGEMENT UNIT II

Soil health definition - Factors to consider (physical, chemical and biological) - Composition of healthy soils - Soil erosion and possible control measures - Techniques to build healthy soil -Management practices for improving soil nutrient - Ecologically sustainable strategies for pest and disease control

UNIT III WATER MANAGEMENT

Soil water storage and availability - Plant yield response to water - Reducing evaporation in agriculture - Earthworks and tanks for rainwater harvesting - Options for improving the productivity of water - Localized irrigation - Irrigation scheduling - Fertigation - Advanced irrigation systems and agricultural practices for sustainable water use

ENERGY AND WASTE MANAGEMENT UNIT IV

Types and sources of agricultural wastes - Composition of agricultural wastes - Sustainable technologies for the management of agricultural wastes - Useful and high value materials produced using different processes from agricultural wastes - Renewable energy for sustainable agriculture

EVALUATING SUSTAINABILITY IN AGROECOSYSTEMS UNIT V

Indicators of sustainability in agriculture - On-farm evaluation of agroecosystem sustainability -Alternative agriculture approaches/ farming techniques for sustainable food production - Goals and components of a community food system - Case studies

TOTAL: 45 PERIODS

OUTCOMES

On completion of the course, the student is expected to be able to

- CO1 Have an in-depth knowledge about the concepts, principles and advantages of sustainable
- CO2 Discuss the sustainable ways in managing soil health, nutrients, pests and diseases
- CO3 Suggest the ways to optimize the use of water in agriculture to promote an ecological use of resources
- CO4 Develop energy and waste management plans for promoting sustainable agriculture in nonsustainable farming areas
- CO5 Assess an ecosystem for its level of sustainability and prescribe ways of converting to a sustainable system through the redesign of a conventional agroecosystem

REFERENCES:

- 1. Approaches to Sustainable Agriculture Exploring the Pathways Towards the Future of Farming, Oberc, B.P. & Arroyo Schnell, A., IUCN, Belgium, 2020
- 2. Natural bioactive products in sustainable agriculture, Singh, J. & Yaday, A.N., Springer, 2020
- 3. Organic Farming for Sustainable Agriculture, Nandwani, D., Springer, 2016
- 4. Principles of Agronomy for Sustainable Agriculture, Villalobos, F.J. & Fereres, E., Springer, 2016
- 5. Sustainable Agriculture for Food Security: A Global Perspective, Balkrishna, A., CRC Press, 2021
- 6. Sustainable Energy Solutions in Agriculture, Bundschuh, J. & Chen, G., CRC Press, 2014

CO – PO Mapping - SUSTAINABLE AGRICULTURE PRACTICES

CO's	PO's		PSO's												
	1	2	3	4	5	6	7	8	9	1	1	1	1	2	3
				-						0	1	2			
1		2						2		2			2	2	
2		2		2	2	2							3	2	
3				2		2							3	2	3
4	3	2			2			2	2	2	2		3	2	3
5		2	3	2			1					1		2	
Avg.	3	2	3	2	2	2	1	2	2	2	2	1	3	2	3

CES333

SUSTAINABLE BIOMATERIALS

LTPC 3003

OBJECTIVES

- To Impart knowledge of biomaterials and their properties
- To learn about Fundamentals aspects of Biopolymers and their applications
- To learn about bioceramics and biopolymers
- To introduce the students about metals as biomaterials and their usage as implants
- To make the students understand the significance of bionanomaterials and its applications.

UNIT-1 INTRODUCTION TO BIOMATERIALS

9

Introduction: Definition of biomaterials, requirements & classification of biomaterials- Types of Biomaterials- Degradable and resorbable biomaterials- engineered natural materials-Biocompatibility-Hydrogels-pyrolitic carbon for long term medical implants-textured and porous materials-Bonding types- crystal structure-imperfection in crystalline structure-surface properties and adhesion of materials –strength of biological tissues-performance of implants-tissue response to implants- Impact and Future of Biomaterials

UNIT-2 BIO POLYMERS

9

Molecular structure of polymers -Molecular weight - Types of polymerization techniques—Types of polymerization reactions- Physical states of polymers- Common polymeric biomaterials - Polyethylene -Polymethylmethacrylate (PMMA-Polylactic acid (PLA) and polyglycolic acid (PGA) - Polycaprolactone (PCL) - Other biodegradable polymers —Polyurethan- reactions polymers for medical purposes - Collagens- Elastin- Cellulose and derivatives-Synthetic polymeric membranes and their biological applications

UNIT-3 BIO CERAMICS AND BIOCOMPOSITES

q

General properties- Bio ceramics - Silicate glass - Alumina (Al2O3) - Zirconia (ZrO2)-Carbon- Calcium phosphates (CaP)- Resorbable Ceramics- surface reactive ceramics- Biomedical Composites-Polymer Matrix Compsite(PMC)-Ceramic Matrix Composite(CMC)-Metal Matrix Composite (MMC)- glass ceramics - Orthopedic implants-Tissue engineering scaffolds

UNIT-4 METALS AS BIOMATERIALS

9

Biomedical metals-types and properties-stainless steel-Cobalt chromium alloys-Titanium alloys-Tantalum-Nickel titanium alloy (Nitinol)- magnesium-based biodegradable alloys-surface properties of metal implants for osteointegration-medical application-corrosion of metallic implants – biological tolerance of implant metals

UNIT-5 NANOBIOMATERIALS

9

Meatllicnanobiomaterials—Nanopolymers-Nanoceramics- Nanocomposites -Carbon based nanobiomaterials - transport of nanoparticles- release rate-positive and negative effect of nanosize-nanofibres-Nano and micro features and their importance in implant performance-Nanosurface and coats-Applications nanoantibiotics-Nanomedicines- Biochips — Biomimetics- BioNEMs -Biosensor-Bioimaging/Molecular Imaging- challenges and future perspective.

TOTAL: 45 PERIODS

OUTCOMES

- Students will gain familiarity with Biomaterials and they will understand their importance.
- Students will get an overview of different biopolymers and their properties

- Students gain knowledge on some of the important Bioceramics and Biocomposite materials
- Students gain knowledge on metals as biomaterials
- Student gains knowledge on the importance of nanobiomaterials in biomedical applications.

REFERENCES

- 1. C. Mauli Agrawal, Joo L. Ong, Mark R. Appleford, Gopinath Mani "Introduction to Biomaterials Basic Theory with Engineering Applications" Cambridge University Press, 2014.
- 2. Donglu shi "Introduction to Biomaterials" Tsinghua University press, 2006.
- 3. Joon Park, R.S.Lakes "Biomaterials An Introduction" third edition, Springer 2007.
- 4. M.Jaffe, W.Hammond, P.Tolias and T.Arinzeh "Characterization of Biomaterials" Wood head publishing, 2013.
- 5. Buddy D.Ratner and Allan S.Hoffman Biomaterials Science "An Introduction to Material in Medicine" Third Edition, 2013.
- 6. VasifHasirci, NesrinHasirci "Fundamentals of Biomaterials" Springer, 2018
- 7. Leopoido Javier Rios Gonzalez. "Handbook of Research on Bioenergy and Biomaterials: Consolidated and green process" Apple academic press, 2021.
- 8. Devarajan Thangadurai, Jeyabalan Sangeetha, Ram Prasad "Functional Bionanomaterials" springer, 2020.
- 9. Sujata.V.Bhat Biomaterials; Narosa Publishing house, 2002.

CES334

MATERIALS FOR ENERGY SUSTAINABILITY

LTPC 3003

OBJECTIVES

- To familiarize the students about the challenges and demands of energy sustainability
- To provide fundamental knowledge about electrochemical devices and the materials used.
- To introduce the students to various types of fuel cell
- To enable students to appreciate novel materials and their usage in photovoltaic application
- To introduce students to the basic principles of various types Supercapacitors and the materials used.

UNIT-1 SUSTAINABLE ENERGY SOURCES

Ç

Introduction to energy demand and challenges ahead – sustainable source of energy (wind, solar etc.) – electrochemical energy systems for energy harvesting and storage – materials for sustainable electrochemical systems building – India centric solutions based on locally available materials – Economics of wind and solar power generators vs. conventional coal plants – Nuclear energy

UNIT-2 ELECTROCHEMICAL DEVICES

9

Electrochemical Energy – Difference between primary and secondary batteries – Secondary battery (Li-ion battery, Sodium-ion battery, Li-S battery, Li-O₂ battery, Nickel Cadmium, Nickel Metal Hydride) – Primary battery (Alkaline battery, Zinc-Carbon battery) – Materials for battery (Anode materials – Lithiated graphite, Sodiated hard carbon, Silicon doped graphene, Lithium Titanate) (Cathode Materials – S, LiCoO₂, LiFePO₄, LiMn₂O₄) – Electrolytes for Lithium-ion battery (ethylene carbonate and propylene carbonate based)

UNIT-3 FUEL CELLS

Principle of operation of fuel cells – types of fuel cells (Proton exchange membrane fuel cells, alkaline fuel cell, direct methanol fuel cells, direct borohydride fuel cells, phosphoric acid fuel cells, solid oxide fuel cells, and molten carbonate fuel cells) – Thermodynamics of fuel cell – Fuel utilization – electrolyte membrane (proton conducting and anion conducting) – Catalysts (Platinum, Platinum alloys, carbon supported platinum systems and metal oxide supported platinum catalysts) – Anatomy

of fuel cells (gas diffusion layer, catalyst layer, flow field plate, current conductors, bipolar plates and monopolar plates).

UNIT-4 PHOTOVOLTAICS

9

Physics of the solar cell – Theoretical limits of photovoltaic conversion – bulk crystal growth of Si and wafering for photovoltaic application - Crystalline silicon solar cells – thin film silicon solar cells – multijunction solar cells – amorphous silicon based solar cells – photovoltaic concentrators – Cu(InGa)Se₂ solar cells – Cadium Telluride solar cells – dye sensitized solar cells – Perovskite solar cells – Measurement and characterization of solar cells - Materials used in solar cells (metallic oxides, CNT films, graphene, OD fullerenes, single-multi walled carbon nanotubes, two-dimensional Graphene, organic or Small molecule-based solar cells materials - copper-phthalocyanine and perylenetetracarboxylicbis - benzine – fullerenes - boron subphthalocyanine- tin (II) phthalocyanine)

UNIT-5 SUPERCAPACITORS

9

Supercapacitor –types of supercapacitors (electrostatic double-layer capacitors, pseudo capacitors and hybrid capacitors) - design of supercapacitor-three and two electrode cell-parameters of supercapacitor- Faradaic and non - Faradaic capacitance – electrode materials (transition metal oxides (MO), mixed metal oxides, conducting polymers (CP), Mxenes, nanocarbons, non-noble metal, chalcogenides, hydroxides and 1D-3D metal-organic frame work (MOF), activated carbon fibres (ACF)- Hydroxides-Based Materials - Polyaniline (PANI), a ternary hybrid composite-conductive polypyrrole hydrogels – Different types of nanocomposites for the SC electrodes (carbon–carbon composites, carbon-MOs composites, carbon-CPs composites and MOs-CPs composites) - Two-Dimensional (2D) Electrode Materials - 2D transition metal carbides, carbonitrides, and nitrides.

TOTAL: 45 PERIODS

OUTCOMES

- Students will acquire knowledge about energy sustainability.
- Students understand the principles of different electrochemical devices.
- Students learn about the working of fuel cells and their application.
- Students will learn about various Photovoltaic applications and the materials used.
- The students gain knowledge on different types of supercapacitors and the performance of various materials

REFERENCES

- 1. Functional materials for sustainable energy applications; John A. Kilner, Stephen J. Skinner, Stuart J. C. Irvine and Peter P. Edwards.
- 2. Hand Book of Fuel Cells: Fuel Cell Technology and Applications, Wolf Vielstich, Arnold Lamm, Hubert Andreas Gasteiger, Harumi Yokokawa, Wiley, London 2003.
- 3. B.E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications, Kluwer Academic / Plenum publishers, New York, 1999.
- 4. T.R. Crompton, Batteries reference book, Newners, 3rd Edition, 2002.
- 5. Materials for Supercapacitor applications; B.Viswanathan. M.Aulice Scibioh
- 6. Electrode Materials for Supercapacitors: A Review of Recent Advances, Parnia Forouzandeh, Vignesh Kumaravel and Suresh C. Pillai, catalysts 2020.
- 7. Recent advances, practical challenges, and perspectives of intermediate temperature solid oxide fuel cell cathodes Amanda Ndubuisi, Sara Abouali, Kalpana Singh and VenkataramanThangadurai, J. Mater. Chem. A, 2022.
- 8. Review of next generation photovoltaic solar cell technology and comparative materialistic development Neeraj Kant, Pushpendra Singh, Materials Today: Proceedings, 2022.

COURSE OBJECTIVE:

- To acquire knowledge on green systems and the environment, energy technology and efficiency, and sustainability.
- To provide green engineering solutions to energy demand, reduced energy footprint.

UNIT I PRINCIPLES OF GREEN CHEMISTRY

q

Historical Perspectives and Basic Concepts. The twelve Principles of Green Chemistry and green engineering. Green chemistry metrics- atom economy, E factor, reaction mass efficiency, and other green chemistry metrics, application of green metrics analysis to synthetic plans.

UNIT II POLLUTION TYPES

9

Pollution – types, causes, effects, and abatement. Waste – sources of waste, different types of waste, chemical, physical and biochemical methods of waste minimization and recycling.

UNIT III GREEN REAGENTS AND GREEN SYNTHESIS

9

Environmentally benign processes- alternate solvents- supercritical solvents, ionic liquids, water as a reaction medium, energy-efficient design of processes- photo, electro and sono chemical methods, microwave-assisted reactions

UNIT IV DESIGNING GREEN PROCESSES

9

Safe design, process intensification, in process monitoring. Safe product and process design – Design for degradation, Real-time Analysis for pollution prevention, inherently safer chemistry for accident prevention

UNIT V GREEN NANOTECHNOLOGY

9

Nanomaterials for water treatment, nanotechnology for renewable energy, nanotechnology for environmental remediation and waste management, nanotechnology products as potential substitutes for harmful chemicals, environmental concerns with nanotechnology

TOTAL: 45 PERIODS

COURSE OUTCOMES

CO1: To understand the principles of green engineering and technology

CO2: To learn about pollution using hazardous chemicals and solvents

CO3: To modify processes and products to make them green and safe.

CO4: To design processes and products using green technology

CO5 – To understand advanced technology in green synthesis

TEXT BOOKS

- 1. Green technology and design for the environment, <u>Samir B. Billatos</u>, <u>Nadia A. Basaly</u>, Taylor & Francis, Washington, DC, ©1997
- 2. Green Chemistry An introductory text M. Lancaster, RSC,2016.
- 3. Green chemistry metrics Alexi Lapkin and david Constable (Eds), Wiley publications, 2008

REFERENCE

1. Environmental chemistry, Stanley E Manahan, Taylor and Francis, 2017

OBJECTIVES:

- to understand and study the complexity of the environment in relation to pollutants generated due to industrial activity.
- To analyze the quality of the environmental parameters and monitor the same for the purpose of environmental risk assessment.

UNIT I ENVIRONMENTAL MONITORING AND STANDARDS

9

Introduction- Environmental Standards- Classification of Environmental Standards- Global Environmental Standards- Environmental Standards in India- Ambient air quality standards- water quality standard- Environmental Monitoring-Need for environmental monitoring- Concepts of environmental monitoring- Techniques of Environmental Monitoring.

UNIT II MONITORING OF ENVIRONMENTAL PARAMETERS

9

Current Environmental Issues- Global Environmental monitoring programme-International conventions- Application of Environmental Monitoring- Atmospheric Monitoring - screening parameters - Significance of environmental sampling- sampling methods - water sampling - sampling of ambient air-sampling of flue gas.

UNIT III ANALYTICAL METHODS FOR ENVIRONMENTAL MONITORING

a

Classification of Instrumental Method- Analysis of Organic Pollutants by Spectrophotometric methods -Determination of nitrogen, phosphorus and, chemical oxygen demand (COD) in sewage; Biochemical oxygen demand (BOD)- Sampling techniques for air pollution measurements; analysis of particulates and air pollutants like oxides of nitrogen, oxides of sulfur, carbon monoxide, hydrocarbon; Introduction to advanced instruments for environmental analysis

UNIT IV ENVIRONMENTAL MONITORING PROGRAMME (EMP) & RISKASSESSMENT 9

Water quality monitoring programme- national water quality monitoring- Parameters for National Water Quality Monitoring- monitoring protocol; Process of risk assessment- hazard identification-exposure assessment- dose-response assessment; risk characterization.

UNIT V AUTOMATED DATA ACQUISITION AND PROCESSING

9

TOTAL: 45 PERIODS

Data Acquisition for Process Monitoring and Control - The Data Acquisition System - Online Data Acquisition, Monitoring, and Control - Implementation of a Data Management System - Review of Observational Networks -Sensors and transducers- classification of transducers- data acquisition system- types of data acquisition systems- data management and quality control; regulatory overview.

COURSE OUTCOMES

After completion of this course, the students will know

CO1	Basic concepts of environmental standards and monitoring.
CO2	the ambient air quality and water quality standards;
CO3	the various instrumental methods and their principles for environmental monitoring
CO4	The significance of environmental standards in monitoring quality and sustainability of the environment.
CO5	the various ways of raising environmental awareness among the people.
CO6	Know the standard research methods that are used worldwide for monitoring the environment.

TEXTBOOKS

1. Environmental monitoring Handbook, Frank R. Burden, © 2002 by The McGraw-Hill Companies, Inc.

2. Handbook of environmental analysis: chemical pollutants in the air, water, soil, and soild wastes / Pradyot Patnaik, © 1997 by CRC Press, Inc

REFERENCES

- 1. Environmental monitoring / edited by G. Bruce Wiersma, © 2004 by CRC Press LLC.
- 2. H. H. Willard, L. L. Merit, J. A. Dean and F. A. Settle, Instrumental Methods of Analysis, CBP Publishers and Distributors, New Delhi, 1988.
- 3. Heaslip, G. (1975) Environmental Data Handling. John Wiley & Sons. New York.

Course Articulation Matrix

Course		Program Outcomes													
Outcom	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS
es	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	О3
CO1	1	1	1	-	•	-	-	-	•	-	-	•	3	-	-
CO2	1	1	1	1	1	-	-	-	1	-	2	2	2	1	1
CO3	1	1	2	1	1	-	-	-	2	-	1	1	1	-	-
CO4	1	2	3	3	1	-	-	-	2	-	3	3	1	•	-
CO5	1	1	3	2	1	-	-	-	3	-	3	1	2	-	-
CO6	3	2	3	3	2	-	-	-	3	-	3	3	3	1	1
Over all	3	2	3	3	2	-	-	-	3	-	3	3	3	1	1

CES337 INTEGRATED ENERGY PLANNING FOR SUSTAINABLE DEVELOPMENT

LTPC 3003

COURSE OBJECTIVES:

- 1. To create awareness on the energy scenario of India with respect to world
- 2. To understand the fundamentals of energy sources, energy efficiency and resulting environmental implications of energy utilisation
- 3. Familiarisation on the concept of sustainable development and its benefits
- 4. Recognize the potential of renewable energy sources and its conversion technologies for attaining sustainable development
- 5. Acquainting with energy policies and energy planning for sustainable development

UNIT I ENERGY SCENARIO

9

Comparison of energy scenario – India and World (energy sources, generation mix, consumption pattern, T&D losses, energy demand, per capita energy consumption) – energy pricing – Energy security

UNIT II ENERGY AND ENVIRONMENT

Conventional Energy Sources - Emissions from fuels – Air, Water and Land pollution – Environmental standards - measurement and controls

UNIT III SUSTAINABLE DEVELOPMENT

9

Sustainable Development: Concepts and Stakeholders, Sustainable Development Goal (SDG) - Social development: Poverty, conceptual issues and measures, impact of poverty. Globalization and Economic growth - Economic development: Economic inequalities, Income and growth.

UNIT IV RENEWABLE ENERGY TECHNOLOGY

9

Renewable Energy – Sources and Potential – Technologies for harnessing from Solar, Wind, Hydro, Biomass and Oceans – Principle of operation, relative merits and demerits

UNIT V ENERGY PLANNING FOR SUSTAINABLE DEVELOPMENT

9

National & State Energy Policy - National solar mission - Framework of Central Electricity Authority - National Hydrogen Mission - Energy and climate policy - State Energy Action Plan, RE integration, Road map for ethanol blending, Energy Efficiency and Energy Mix

COURSE OUTCOMES:

Upon completion of this course, the students will be able to

- 1. Understand the world and Indian energy scenario
- 2. Analyse energy projects, its impact on environment and suggest control strategies
- 3. Recognise the need of Sustainable development and its impact on human resource development
- 4. Apply renewable energy technologies for sustainable development
- 5. Fathom Energy policies and planning for sustainable development.

REFERENCES:

- 1. Energy Manager Training Manual (4Volumes) available at http://www.em-ea.org/gbook1.asp, a website administered by Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power, Government of India.2004
- 2. Robert Ristirer and Jack P. Kraushaar, "Energy and the environment", Willey, 2005.
- 3. Godfrey Boyle, "Renewable Energy, Power for a Sustainable Future", Oxford University Press. U.K., 2012
- 4. Twidell, J.W. & Weir A., "Renewable Energy Resources", EFNSpon Ltd., UK, 2015.
- 5. Dhandapani Alagiri, Energy Security in India Current Scenario, The ICFAI University Press, 2006.
- 6. M.H. Fulekar, Bhawana Pathak, R K Kale, "Environment and Sustainable Development" Springer, 2016
- 7. https://www.niti.gov.in/verticals/energy

CES338 ENERGY EFFICIENCY FOR SUSTAINABLE DEVELOPMENT

LTPC 3003

COURSE OBJECTIVES:

- 1. To understand the types of energy sources, energy efficiency and environmental implications of energy utilisation
- 2. To create awareness on energy audit and its impacts
- 3. To acquaint the techniques adopted for performance evaluation of thermal utilities4. To familiarise on the procedures adopted for performance evaluation of electrical utilities
- 5. To learn the concept of sustainable development and the implication of energy usage

UNIT I **ENERGY AND ENVIRONMENT**

Primary energy sources - Coal, Oil, Gas - India Vs World with respect to energy production and consumption, Climate Change, Global Warming, Ozone Depletion, UNFCCC, COP

UNIT II **ENERGY AUDITING**

Need and types of energy audit. Energy management (audit) approach-understanding energy costs, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, fuel & energy substitution, energy audit instruments

ENERGY EFFICIENCY IN THERMAL UTILITIES UNIT III

9

Energy conservation avenues in steam generation and utilisation, furnaces, Thermic Fluid Heaters. Insulation and Refractories - Commercial waste heat recovery devices: recuperator, regenerator, heat pipe, heat exchangers (Plate, Shell & Tube), heat pumps, and thermocompression

ENERGY CONSERVTION IN ELECTRICAL UTILITIES UNIT IV

Demand side management - Power factor improvement - Energy efficient transformers - Energy conservation avenues in Motors, HVAC, fans, blowers, pumps, air compressors, illumination systems and cooling towers

UNIT V SUSTAINABLE DEVELOPMENT

Sustainable Development: Concepts and Stakeholders, Sustainable Development Goal (SDG). Globalization and Economic growth. Economic development: Economic inequalities, Income and growth. Social development: Poverty, conceptual issues and measures, impact of poverty,

COURSE OUTCOMES:

Upon completion of this course, the students will be able to

- 1. Understand the prevailing energy scenario
- 2. Familiarise on energy audits and its relevance
- 3. Apply the concept of energy audit on thermal utilities
- 4. Employ relevant techniques for energy improvement in electrical utilities
- 5. Understand Sustainable development and its impact on human resource development

REFERENCES:

- 1. Energy Manager Training Manual (4Volumes) available at http://www.emea.org/gbook1.asp, a website administered by Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power, Government of India.2004
- 2. Eastop.T.D& Croft D.R, "Energy Efficiency for Engineers and Technologists", Logman Scientific & Technical, ISBN-0-582-03184, 1990
- 3. W.R. Murphy and G. McKay "Energy Management" Butterworths, London 1987
- 4. Pratap Bhattacharyya, "Climate Change and Greenhouse Gas Emission", New India Publishing Agency- Nipa, 2020
- 5. Matthew John Franchetti, Defne Apul "Carbon Footprint Analysis: Concepts, Methods, Implementation, and Case Studies" CRC Press,2012
- 6. Robert A. Ristinen, Jack J. Kraushaar, Jeffrey T. Brack, "Energy and the Environment", 4th Edition, Wiley, 2022
- 7. M.H. Fulekar,Bhawana Pathak, R K Kale, "Environment and Sustainable Development" Springer,2016
- 8. Sustainable development in India: Stocktaking in the run up to Rio+20: Report prepared by TERI for MoEF, 2011.

GE3751

PRINCIPLES OF MANAGEMENT

L T P C 3 0 0 3

COURSE OBJECTIVES:

- Sketch the Evolution of Management.
- Extract the functions and principles of management.
- Learn the application of the principles in an organization.
- Study the various HR related activities.
- Analyze the position of self and company goals towards business.

UNIT I INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS

9

Definition of Management – Science or Art – Manager Vs Entrepreneur- types of managers-managerial roles and skills – Evolution of Management –Scientific, human relations, system and contingency approaches— Types of Business organization- Sole proprietorship, partnership, company-public and private sector enterprises- Organization culture and Environment – Current trends and issues in Management.

UNIT II PLANNING

9

Nature and purpose of planning – Planning process – Types of planning – Objectives – Setting objectives – Policies – Planning premises – Strategic Management – Planning Tools and Techniques – Decision making steps and process.

UNIT III ORGANISING

Ç

Nature and purpose – Formal and informal organization – Organization chart – Organization structure – Types – Line and staff authority – Departmentalization – delegation of authority – Centralization and decentralization – Job Design - Human Resource Management – HR Planning,

Recruitment, selection, Training and Development, Performance Management, Career planning and management.

UNIT IV DIRECTING

9

Foundations of individual and group behaviour—Motivation – Motivation theories – Motivational techniques – Job satisfaction – Job enrichment – Leadership – types and theories of leadership – Communication – Process of communication – Barrier in communication – Effective communication – Communication and IT.

UNIT V CONTROLLING

9

System and process of controlling – Budgetary and non - Budgetary control techniques – Use of computers and IT in Management control – Productivity problems and management – Control and performance – Direct and preventive control – Reporting.

COURSE OUTCOMES:

CO1: Upon completion of the course, students will be able to have clear understanding of managerial functions like planning, organizing, staffing, leading & controlling.

CO2: Have same basic knowledge on international aspect of management.

CO3: Ability to understand management concept of organizing.

CO4: Ability to understand management concept of directing.

CO5: Ability to understand management concept of controlling.

TEXT BOOKS:

- 1. Harold Koontz and Heinz Weihrich "Essentials of management" Tata McGraw Hill, 1998.
- 2. Stephen P. Robbins and Mary Coulter, "Management", Prentice Hall (India)Pvt. Ltd., 10th Edition, 2009.

REFERENCES:

- 1. Robert Kreitner and MamataMohapatra, "Management", Biztantra, 2008.
- 2. Stephen A. Robbins and David A. Decenzo and Mary Coulter, "Fundamentals of Management" Pearson Education, 7th Edition, 2011.
- 3. Tripathy PC and Reddy PN, "Principles of Management", Tata Mcgraw Hill, 1999.

CO'-						PC)'s							PSO's		
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3		-	-	-	1	-	-	-	-	-	-	2	1	1	
2	-	1	1	-	-	-	-	-	-	-	-	-	2	1	-	
3	1		-	2	-	-	1	-	2	-	1	1	-	-	2	
4	-	1	1	1	2	-	-	1	2	-	-	-	1	1	1	
5	1		-	-	1	1	-	-	-	3	-	1	1	-	1	
AVg.	1.66	1	1	1.5	1.5	1	1	1	2	3	1	1	1.5	1	1.25	

GE3752

TOTAL QUALITY MANAGEMENT

L T P C 3 0 0 3

COURSE OBJECTIVES:

- Teach the need for quality, its evolution, basic concepts, contribution of quality gurus, TQMframework, Barriers and Benefits of TQM.
- Explain the TQM Principles for application.
- Define the basics of Six Sigma and apply Traditional tools, New tools, Benchmarking and FMEA.
- Describe Taguchi's Quality Loss Function, Performance Measures and apply Techniqueslike QFD, TPM, COQ and BPR.

Illustrate and apply QMS and EMS in any organization.

UNIT I INTRODUCTION

9

Introduction - Need for quality - Evolution of quality - Definition of quality - Dimensions of product and service quality -Definition of TQM-- Basic concepts of TQM - Gurus of TQM (Brief introduction) -- TQM Framework- Barriers to TQM -Benefits of TQM.

UNIT II TQM PRINCIPLES

9

Leadership - Deming Philosophy, Quality Council, Quality statements and Strategic planning-Customer Satisfaction –Customer Perception of Quality, Feedback, Customer complaints, Service Quality, Kano Model and Customer retention – Employee involvement – Motivation, Empowerment, Team and Teamwork, Recognition & Reward and Performance Appraisal-Continuous process improvement –Juran Trilogy, PDSA cycle, 5S and Kaizen - Supplier partnership – Partnering, Supplier selection, Supplier Rating and Relationship development.

UNIT III TQM TOOLS & TECHNIQUES I

9

The seven traditional tools of quality - New management tools - Six-sigma Process Capability-Bench marking - Reasons to benchmark, Benchmarking process, What to Bench Mark, Understanding Current Performance, Planning, Studying Others, Learning from the data, Using the findings, Pitfalls and Criticisms of Benchmarking - FMEA - Intent, Documentation, Stages: Design FMEA and Process FMEA.

UNIT IV TQM TOOLS & TECHNIQUES II

9

Quality circles – Quality Function Deployment (QFD) - Taguchi quality loss function – TPM – Concepts, improvement needs – Performance measures- Cost of Quality - BPR.

UNIT V QUALITY MANAGEMENT SYSTEM

9

Introduction-Benefits of ISO Registration-ISO 9000 Series of Standards-Sector-Specific Standards - AS 9100, TS16949 and TL 9000-- ISO 9001 Requirements-Implementation-Documentation- Internal Audits-Registration-ENVIRONMENTAL MANAGEMENT SYSTEM: Introduction—ISO 14000 Series Standards—Concepts of ISO 14001—Requirements of ISO 14001-Benefits of EMS.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: Ability to apply TQM concepts in a selected enterprise.

CO2: Ability to apply TQM principles in a selected enterprise.

CO3: Ability to understand Six Sigma and apply Traditional tools, New tools, Benchmarking and FMEA.

CO4: Ability to understand Taguchi's Quality Loss Function, Performance Measures and apply QFD, TPM, COQ and BPR.

CO5: Ability to apply QMS and EMS in any organization.

CO's-PO's & PSO's MAPPING

CO						PC)'s							PSO's		
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1		3										3	2		3	
2						3						3		2		
3					3				3					2	3	
4		2			3	2	3	2				3	3	2		
5			3			3	3	2								
AVg.		2.5	3		3	2.6	3	2	3							

TEXT BOOK:

1. Dale H.Besterfiled, Carol B.Michna, Glen H. Bester field, Mary B.Sacre, Hemant Urdhwareshe and Rashmi Urdhwareshe, "Total Quality Management", Pearson Education Asia, Revised Third Edition, Indian Reprint, Sixth Impression, 2013.

REFERENCES:

1 Joel.E. Ross, "Total Quality Management – Text and Cases", Routledge., 2017.

- 2. Kiran.D.R, "Total Quality Management: Key concepts and case studies, Butterworth Heinemann Ltd, 2016.
- 3. Oakland, J.S. "TQM Text with Cases", Butterworth Heinemann Ltd., Oxford, Third Edition, 2003.
- 4. Suganthi,L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd.,2006.

GE3753 ENGINEERING ECONOMICS AND FINANCIAL ACCOUNTING

LTPC 3003

COURSE OBJECTIVES:

- Understanding the concept of Engineering Economics.
- Implement various micro economics concept in real life.
- Gaining knowledge in the field of macro economics to enable the students to have better
- understanding of various components of macro economics.
- Understanding the different procedures of pricing.
- Learn the various cost related concepts in micro economics.

UNIT I DEMAND & SUPPLY ANALYSIS

9

Managerial Economics - Relationship with other disciplines - Firms: Types, objectives and goals - Managerial decisions - Decision analysis.Demand - Types of demand - Determinants of demand - Demand function - Demand elasticity - Demand forecasting - Supply - Determinants of supply - Supply function -Supply elasticity.

UNIT II PRODUCTION AND COST ANALYSIS

9

Production function - Returns to scale - Production optimization - Least cost input - Isoquants - Managerial uses of production function. Cost Concepts - Cost function - Determinants of cost - Short run and Long run cost curves - Cost Output Decision - Estimation of Cost.

UNIT III PRICING

9

Determinants of Price - Pricing under different objectives and different market structures - Price discrimination - Pricing methods in practice.

UNIT IV FINANCIAL ACCOUNTING (ELEMENTARY TREATMENT)

9

Balance sheet and related concepts - Profit & Loss Statement and related concepts - - Financial Ratio Analysis - Cash flow analysis - Funds flow analysis - Comparative financial statements - Analysis & Interpretation of financial statements.

UNIT V CAPITAL BUDGETING (ELEMENTARY TREATMENT)

9

TOTAL: 45 PERIODS

Investments - Risks and return evaluation of investment decision - Average rate of return - Payback Period - Net Present Value - Internal rate of return.

COURSE OUTCOMES: Students able to

CO1: Upon successful completion of this course, students will acquire the skills to apply the basics of economics and cost analysis to engineering and take economically sound decisions

CO2: Evaluate the economic theories, cost concepts and pricing policies

CO3: Understand the market structures and integration concepts

CO4: Understand the measures of national income, the functions of banks and concepts of globalization

CO5: Apply the concepts of financial management for project appraisal

TEXT BOOKS:

1. Panneer Selvam, R, "Engineering Economics", Prentice Hall of India Ltd, New Delhi,2001.

2. Managerial Economics: Analysis, Problems and Cases - P. L. Mehta, Edition, 13. Publisher, Sultan Chand, 2007.

REFERENCES:

- 1. Chan S.Park, "Contemporary Engineering Economics", Prentice Hall of India, 2011.
- 2. Donald.G. Newman, Jerome.P.Lavelle, "Engineering Economics and analysis" Engg. Press, Texas, 2010.
- 3. Degarmo, E.P., Sullivan, W.G and Canada, J.R, "Engineering Economy", Macmillan, New York, 2011.
- 4. Zahid A khan: Engineering Economy, "Engineering Economy", Dorling Kindersley, 2012
- 5. Dr. S. N. Maheswari and Dr. S.K. Maheshwari: Financial Accounting, Vikas, 2009 **MAPPING OF COS AND POS:**

CO's			PO's	}									PSO's			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1		3								2			1	3		
2		3												2	2	
3		2														
4	2	3	3		2								2	3		
5	3	3	3		2								2		2	
AVg.	2.5	2.4	3		2					2			1.8	2.6	2	

GE3754

HUMAN RESOURCE MANAGEMENT

L T P C 3 0 0 3

OBJECTIVE:

- To provide knowledge about management issues related to staffing,
- To provide knowledge about management issues related to training,
- To provide knowledge about management issues related to performance
- To provide knowledge about management issues related to compensation
- To provide knowledge about management issues related to human factors consideration and compliance with human resource requirements.

UNIT I INTRODUCTION TO HUMAN RESOURCE MANAGEMENT

9

The importance of human resources – Objective of Human Resource Management - Human resource policies - Role of human resource manager.

UNIT II HUMAN RESOURCE PLANNING

Ç

Importance of Human Resource Planning – Internal and External sources of Human Resources -Recruitment - Selection – Socialization.

UNIT III TRAINING AND EXECUTIVE DEVELOPMENT

9

Types of training and Executive development methods – purpose – benefits.

UNIT IV EMPLOYEE COMPENSATION

9

Compensation plan – Reward – Motivation – Career Development - Mentor – Protege relationships.

UNIT V PERFORMANCE EVALUATION AND CONTROL

9

Performance evaluation – Feedback - The control process – Importance – Methods – grievances – Causes – Redressal methods.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: Students would have gained knowledge on the various aspects of HRM

CO2: Students will gain knowledge needed for success as a human resources professional.

CO3: Students will develop the skills needed for a successful HR manager.

CO4: Students would be prepared to implement the concepts learned in the

workplace.

CO5: Students would be aware of the emerging concepts in the field of HRM

TEXT BOOKS

- 1. Decenzo and Robbins, "Human Resource Management", 8th Edition, Wiley, 2007.
- 2. John Bernardin. H., "Human Resource Management An Experimental Approach", 5th Edition, Tata McGraw Hill, 2013, New Delhi.

REFERENCES:

- 1. Luis R,. Gomez-Mejia, DavidB. Balkin and Robert L. Cardy, "Managing Human Resources", 7th Edition, PHI, 2012.
- 2. Dessler, "Human Resource Management", Pearson Education Limited, 2007.

CO's-PO's & PSO's MAPPING

		POOL-														
CO's			PO's	•									PSO's			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	2	1	2	2	2	1	1	2	1	1	1	1	1	1	
2	3	3	2	3	2	2	2	2	3	1	2	1	1	2	1	
3	3	3	3	3	3	3	2	2	3	1	2	1	1	2	1	
4	3	3	2	3	3	2	2	2	2	1	1	1	1	1	1	
5	3	3	1	2	2	2	2	2	2	1	1	1	1	1	1	
AVg.	2.8	2.8	1.8	2.6	2.6	2.2	1.8	1.8	2.4	1	1.4	1	1	1.4	1	

GE3755

KNOWLEDGE MANAGEMENT

L T P C 3 0 0 3

COURSE OBJECTIVES:

The student should be made to:

- Learn the Evolution of Knowledge management.
- Be familiar with tools.
- Be exposed to Applications.
- Be familiar with some case studies.

UNIT I INTRODUCTION

a

Introduction: An Introduction to Knowledge Management - The foundations of knowledge management- including cultural issues- technology applications organizational concepts and processes-management aspects- and decision support systems. The Evolution of Knowledge management: From Information Management to Knowledge Management - Key Challenges Facing the Evolution of Knowledge Management - Ethics for Knowledge Management.

UNIT II CREATING THE CULTURE OF LEARNING AND KNOWLEDGE SHARING 9
Organization and Knowledge Management - Building the Learning Organization. Knowledge Markets:
Cooperation among Distributed Technical Specialists – Tacit Knowledge and Quality Assurance.

UNIT III KNOWLEDGE MANAGEMENT-THE TOOLS

9

Telecommunications and Networks in Knowledge Management - Internet Search Engines and Knowledge Management - Information Technology in Support of Knowledge Management - Knowledge Management and Vocabulary Control - Information Mapping in Information Retrieval - Information Coding in the Internet Environment - Repackaging Information.

UNIT IV KNOWLEDGE MANAGEMENT APPLICATION

ç

Components of a Knowledge Strategy - Case Studies (From Library to Knowledge Center, Knowledge Management in the Health Sciences, Knowledge Management in Developing Countries).

UNIT V FUTURE TRENDS AND CASE STUDIES

9

Advanced topics and case studies in knowledge management - Development of a knowledge management map/plan that is integrated with an organization's strategic and business plan - A case study on Corporate Memories for supporting various aspects in the process life -cycles of an

organization.

COURSEOUTCOMES:

Upon completion of the course, the student should be able to:

CO1: Understand the process of acquiry knowledge from experts

CO2: Understand the learning organization.

CO3: Use the knowledge management tools.

CO4: Develop knowledge management Applications.

CO5: Design and develop enterprise applications.

CO's-PO's & PSO's MAPPING

CO's		PO's													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1					1										
2					2								1		
3					2									2	
4				1	1				1					1	
5				1	1				1					1	
AVg.				1	1.4				1				1	1.33	

TEXT BOOK:

1. Srikantaiah, T.K., Koenig, M., "Knowledge Management for the Information Professional" Information Today, Inc., 2000.

REFERENCE:

1. Nonaka, I., Takeuchi, H., "The Knowledge-Creating Company: How Japanese Companies Create the Dynamics of Innovation", Oxford University Press, 1995.

GE3792

INDUSTRIAL MANAGEMENT

L T P C 3 0 0 3

COURSE OBJECTIVES

- 1. To study the basic concepts of management; approaches to management; contributors to management studies; various forms of business organization and trade unions function in professional organizations.
- 2. To study the planning; organizing and staffing functions of management in professional organization.
- 3. To study the leading; controlling and decision making functions of management in professional organization.
- 4. To learn the organizational theory in professional organization.
- 5. To learn the principles of productivity and modern concepts in management in professional organization.

UNIT – I INTRODUCTION TO MANAGEMENT

9

Management: Introduction; Definition and Functions – Approaches to the study of Management – Mintzberg's Ten Managerial Roles – Principles of Taylor; Fayol; Weber; Parker – Forms of Organization: Sole Proprietorship; Partnership; Company (Private and Public); Cooperative – Public Sector Vs Private Sector Organization – Business Environment: Economic; Social; Political; Legal – Trade Union: Definition; Functions; Merits & Demerits.

Planning: Characteristics; Nature; Importance; Steps; Limitation; Planning Premises; Strategic Planning; Vision & Mission statement in Planning—Organizing: Organizing Theory; Principles; Types; Departmentalization; Centralization and Decentralization; Authority & Responsibility—Staffing: Systems Approach; Recruiting and Selection Process; Human Resource Development (HRD) Concept and Design.

UNIT – III FUNCTIONS OF MANAGEMENT – II 9

Directing (Leading): Leadership Traits; Style; Morale; Managerial Grids (Blake-Mounton, Reddin) – Communication: Purpose; Model; Barriers – Controlling: Process; Types; Levels; Guidelines; Audit (External, Internal, Merits); Preventive Control – Decision Making: Elements; Characteristics; Nature; Process; Classifications.

UNIT – IV ORGANIZATION THEORY 9

Organizational Conflict: Positive Aspects; Individual; Role; Interpersonal; Intra Group; Inter Group; Conflict Management – Maslow's hierarchy of needs theory; Herzberg's motivation-hygiene theory; McClelland's three needs motivation theory; Vroom's valence-expectancy theory – Change Management: Concept of Change; Lewin's Process of Change Model; Sources of Resistance; Overcoming Resistance; Guidelines to managing Conflict.

UNIT – V PRODUCTIVITY AND MODERN TOPICS 9

Productivity: Concept; Measurements; Affecting Factors; Methods to Improve – Modern Topics (concept, feature/characteristics, procedure, merits and demerits): Business Process Reengineering (BPR); Benchmarking; SWOT/SWOC Analysis; Total Productive Maintenance; Enterprise Resource Planning (ERP); Management of Information Systems (MIS).

COURSE OUTCOMES:

At the end of the course the students would be able to

- CO1 Explain basic concepts of management; approaches to management; contributors to management studies; various forms of business organization and trade unions function in professional organizations.
- CO2 Discuss the planning; organizing and staffing functions of management in professional organization.
- CO3 Apply the leading; controlling and decision making functions of management in professional organization.
- CO4 Discuss the organizational theory in professional organization.
- CO5 Apply principles of productivity and modern concepts in management in professional organization.

TEXT BOOKS:

1. M. Govindarajan and S. Natarajan, "Principles of Management", Prentice Hall of India, New Delhi, 2009.

2. Koontz. H. and Weihrich. H., "Essentials of Management: An International Perspective", 8th Edition, Tata McGrawhill, New Delhi, 2010.

REFERENCES:

- 1. Joseph J, Massie, "Essentials of Management", 4th Edition, Pearson Education, 1987.
- 2. Saxena, P. K., "Principles of Management: A Modern Approach", Global India Publications, 2009.
- 3. S.Chandran, "Organizational Behaviours", Vikas Publishing House Pvt. Ltd., 1994.
- 4. Richard L. Daft, "Organization Theory and Design", South Western College Publishing, 11th Edition, 2012.
- 5. S. TrevisCerto, "Modern Management Concepts and Skills", Pearson Education, 2018.

MAPPING OF COS AND POS:

						РО								PSO		
C	1	2	3	4	5	6	7	8	9	1 0	1	1 2	1	2	3	
1	1	1	1	1	1	3	2	3	2	3	1	3	1	1	1	
2	1	1	1	1	1	3	2	3	2	3	1	3	1	1	1	
3	1	1	1	1	1	3	2	3	2	3	1	3	1	1	1	
4	1	1	1	1	1	3	2	3	2	3	1	3	1	1	1	
5	1	1	1	1	1	3	2	3	2	3	1	3	1	1	1	

COURSE OBJECTIVES:

- To introduce fundamental concepts of industrial management
- To understand the approaches to the study of Management
- To learn about Decision Making, Organizing and leadership
- To analyze the Managerial Role and functions
- To know about the Supply Chain Management'

UNIT 1 INTRODUCTION

9

Technology Management - Definition - Functions - Evolution of Modern Management - Scientific Management Development of Management Thought. Approaches to the study of Management, Forms of Organization - Individual Ownership - Partnership - Joint Stock Companies - Co-operative Enterprises - Public Sector Undertakings, Corporate Frame Work- Share Holders - Board of Directors - Committees - Chief Executive Line and Functional Managers, -Financial-Legal-Trade Union

UNIT 2 FUNCTIONS OF MANAGEMENT

9

Planning - Nature and Purpose - Objectives - Strategies - Policies and Planning Premises - Decision Making - Organizing - Nature and Process - Premises - Departmentalization - Line and staff - Decentralization - Organizational culture, Staffing - selection and training . Placement - Performance appraisal - Career Strategy - Organizational Development. Leading - Managing human factor - Leadership . Communication, Controlling - Process of Controlling - Controlling techniques, productivity and operations management - Preventive control, Industrial Safety.

UNIT 3 ORGANIZATIONAL BEHAVIOUR

a

Definition - Organization - Managerial Role and functions -Organizational approaches, Individual behaviour - causes - Environmental Effect - Behaviour and Performance, Perception - Organizational Implications. Personality - Contributing factors - Dimension - Need Theories - Process Theories - Job Satisfaction, Learning and Behaviour-Learning Curves, Work Design and approaches.

UNIT 4 GROUPDYNAMICS

9

Group Behaviour - Groups - Contributing factors - Group Norms, Communication - Process - Barriers to communication - Effective communication, leadership - formal and informal characteristics – Managerial Grid - Leadership styles - Group Decision Making - Leadership Role in Group Decision, Group Conflicts - Types - Causes - Conflict Resolution - Inter group relations and conflict, Organization centralization and decentralization - Formal and informal - Organizational Structures Organizational Change and Development - Change Process - Resistance to Change - Culture and Ethics.

UNIT 5 MODERN CONCEPTS

9

Management by Objectives (MBO) - Management by Exception (MBE), Strategic Management - Planning for Future direction - SWOT Analysis -Evolving development strategies, information technology in management Decisions support system-Management Games Business Process Reengineering (BPR) - Enterprises Resource Planning (ERP) - Supply Chain Management (SCM) - Activity Based Management (AM) - Global Perspective - Principles and Steps Advantages and disadvantage

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: Understand the basic concepts of industrial management

CO2: Identify the group conflicts and its causes.

CO3: Perform swot analysis

CO4: Analyze the learning curves

CO5: Understand the placement and performance appraisal

REFERENCES:

Maynard H.B, "Industrial Engineering Hand book", McGraw-Hill, sixth 2008

CO's - PO's & PSO's MAPPING

С					P	O's							PSO	's	
0	1	2	3	4	5	6	7	8	9	1	1	1	1	2	3
,										0	1	2			
s															
1	2	1											2	1	
2		3	2	3											2
3	2	3	2	3									1	2	3
4	2	2	3	3										3	3
5	2	2											2		
Α	2	2	2	3									1	2	2
V													•		•
g		2	3										8		6
•															

MANAGEMENT SCIENCE

LTPC 3 0 0 3

COURSE OBJECTIVES:

Of this course are

OIM352

- To introduce fundamental concepts of management and organization to students. 6.
- 7. Toi mpart knowledge to students on various aspects of marketing, quality control and marketing strategies.
- 8. To make students familiarize with the concepts of human resources management.
- To acquaint students with the concepts of project management and cost analysis.
- To make students familiarize with the concepts of planning process and business strategies. 10.

INTRODUCTION TO MANAGEMENT AND ORGANISATION

Concepts of Management and organization- nature, importance and Functions of Management, Systems Approach to Management - Taylor's Scientific Management Theory- Fayal's Principles of Management- Maslow's theory of Hierarchy of Human Needs- Douglas McGregor's TheoryX and TheoryY-HertzbergTwoFactorTheoryofMotivation-LeadershipStyles,Social responsibilities Management, Designing Organisational Structures: Basic concepts related to Organisation -Departmentation and Decentralisation.

OPERATIONS AND MARKETING MANAGEMENT UNITII

Principles and Types of Plant Layout-Methods of Production(Job, batch and Mass Production), Work Study - Basic procedure involved in Method Study and Work Measurement - Business Process Reengineering (BPR)-Statistical Quality Control:control charts for Variables and Attributes (simple Problems) and Acceptance Sampling, Objectives of Inventory control, EOQ, ABC Analysis, Purchase Procedure, Stores Management and Store Records - JIT System, Supply Chain Management, Functions of Marketing, Marketing Mix, and Marketing Strategies based on ProductLifeCycle.

UNIT III HUMAN RESOURCES MANAGEMENT

Concepts of HRM, HRD and Personnel Management and Industrial Relations (PMIR), HRM vs PMIR, Basic functions of HR Manager: Manpower planning, Recruitment, Selection, Training and Development, Wage and Salary Administration, Promotion, Transfer, Performance Appraisal, Grievance Handling and Welfare Administration, Job Evaluation and Merit Rating -Capability Maturity Model (CMM)Levels.

UNIT IV PROJECT MANAGEMENT

9

Network Analysis, Programme Evaluation and Review Technique (PERT), Critical Path Method(CPM), identifying critical path, Probability of Completing the project within given time, Project Cost Analysis, Project Crashing (simple problems).

UNITY STRATEGIC MANAGEMENT AND CONTEMPORARY STRATEGIC ISSUES 9

Mission, Goals, Objectives, Policy, Strategy, Programmes, Elements of Corporate Planning Process, Environmental Scanning, Value Chain Analysis, SWOT Analysis, Steps in Strategy Formulation and Implementation, Generic Strategy alternatives. Bench Marking and Balanced Score Cardas Contemporary Business Strategies.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of the course, Students will be able to

CO1:Plan an organizational structure for a given context in the organization to carryout production operations through Work-study.

CO2: Survey the markets, customers and competition better and price the given products appropriatey CO3:Ensure quality for a given product or service.

CO4:Plan, schedule and control projects through PERTandCPM.

CO5:Evaluate strategyforabusiness orserviceorganisation.

TEXTBOOKS:

- 5. KanishkaBedi, Production and Operations Management, Oxford University Press, 2007.
- 6. Stoner, Freeman, Gilbert, Management, 6th Ed, Pearson Education, New Delhi, 2004.
- 7. Thomas N. Duening & John M. Ivancevich Management Principles and Guidelines, Biztantra, 2007.
- 8. P.VijayKumar, N.Appa Rao and Ashnab, Chnalill, CengageLearning India, 2012.

REFERECES:

- 5. KotlerPhilip and KellerKevinLane: Marketing Management, Pearson, 2012.
- 6. KoontzandWeihrich: Essentials of Management. McGrawHill. 2012.
- 7. Lawrence RJauch, R. Guptaand William F. Glueck: Business Policy and Strategic Management Science, McGrawHill, 2012.
- 8. SamuelC.Certo:Modern Management,2012.

CO's-PO's & PSO's MAPPING

CO's			PO's										PSO's				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	3			3	3	3		3	3	2			2	3			
2	3			2	3	3		2	3	2				2			
3	3			3	2	2		3	2	2					2		
4	3			3	3	2		3	2	3					3		
5	3			2	3	3		2	3	3			2	1			
AVg.	3			2.6	2.8	2.6		2.6	2.6	2.4			2	2	2.5		

PRODUCTION PLANNING AND CONTROL

LTPC 3 0 0 3

COURSE OBJECTIVES:

- To understand the concept of production planning and control act work study,
- To apply the concept of product planning,
- To analyze the production scheduling,
- To apply the Inventory Control concepts.
- To prepare the manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).

UNIT I INTRODUCTION

9

Objectives and benefits of planning and control-Functions of production control-Types of production-job- batch and continuous-Product development and design-Marketing aspect - Functional aspects-Operational aspect-Durability and dependability aspect aesthetic aspect. Profit consideration-Standardization, Simplification & specialization- Break even analysis-Economics of a new design.

UNITII WORK STUDY

9

Method study, basic procedure-Selection-Recording of process - Critical analysis, Development - Implementation - Micro motion and memo motion study – work measurement - Techniques of work measurement - Time study - Production study - Work sampling - Synthesis from standard data - Predetermined motion time standards.

UNITIII PRODUCT PLANNING AND PROCESS PLANNING

9

Product planning-Extending the original product information-Value analysis-Problems in lack of product planning-Process planning and routing-Pre requisite information needed for process planning- Steps in process planning-Quantity determination in batch production-Machine capacity, balancing- Analysis of process capabilities in a multi product system.

UNITIV PRODUCTION SCHEDULING

9

Production Control Systems-Loading and scheduling-Master Scheduling-Scheduling rules-Gantt charts-Perpetual loading-Basic scheduling problems - Line of balance – Flow production scheduling-Batch production scheduling-Product sequencing – Production Control systems- Periodic batch control-Material requirement planning kanban – Dispatching-Progress reporting and expediting-Manufacturing lead time-Techniques for aligning completion times and due dates.

UNIT V INVENTORY CONTROL AND RECENT TRENDS IN PPC

9

Inventory control-Purpose of holding stock-Effect of demand on inventories-Ordering procedures. Two bin system - Ordering cycle system-Determination of Economic order quantity and economic lot size- ABC analysis - Recorder procedure-Introduction to computer integrated production planning systems- elements of JUST IN TIME SYSTEMS-Fundamentals of MRP II and ERP.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of this course,

CO1: The students can able to prepare production planning and control act work study,

CO2:The students can able to prepare product planning,

CO3:The students can able to prepare production scheduling,

CO4:The students can able to prepare Inventory Control.

CO5:They can plan manufacturing requirements manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).

TEXT BOOKS:

1. James. B. Dilworth, "Operations management – Design, Planning and Control for manufacturing and services" Mcgraw Hill International edition 1992.

2. Martand Telsang, "Industrial Engineering and Production Management", First edition, S. Chand and Company, 2000.

REFERENCES

- 1. Chary. S.N., "Theory and Problems in Production & Operations Management", Tata McGraw Hill, 1995.
- 2. Elwood S.Buffa, and Rakesh K.Sarin, "Modern Production / Operations Management", 8th Edition John Wiley and Sons, 2000
- 3. Jain. K.C. & Aggarwal. L.N., "Production Planning Control and Industrial Management", Khanna Publishers. 1990
- 4. Kanishka Bedi, "Production and Operations management", 2nd Edition, Oxford university press, 2007.
- 5. Melynk, Denzler, "Operations management A value driven approach" Irwin Mcgraw hill.
- 6. Norman Gaither, G. Frazier, "Operations Management" 9th Edition, Thomson learning IE, 2007
- 7. Samson Eilon, "Elements of Production Planning and Control", Universal Book Corpn. 1984
- 8. Upendra Kachru, "Production and Operations Management Text and cases" 1st Edition, Excel books 2007

CO's-PO's & PSO's MAPPING

CO's					PO	S						PSO's		
	1	2	3	11	12	1	2	3						
1	3	3		3		1			1		3			
2	3	2		3								2		
3		2		3								2		
4		2	2											
5	3	3	2									1		
AVg.	3	2.6	2	3		1			1		3	1.8		